Skip to main content
Top
Published in: Journal of Digital Imaging 6/2013

Open Access 01-12-2013

Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images

Authors: Matthias Hammon, Alexander Cavallaro, Marius Erdt, Peter Dankerl, Matthias Kirschner, Klaus Drechsler, Stefan Wesarg, Michael Uder, Rolf Janka

Published in: Journal of Imaging Informatics in Medicine | Issue 6/2013

Login to get access

Abstract

This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support.
Literature
1.
go back to reference Ghaneh P, Costello E, Neoptolemos JP: Biology and management of pancreatic cancer. Postgrad Med J 84:478–97, 2008PubMedCrossRef Ghaneh P, Costello E, Neoptolemos JP: Biology and management of pancreatic cancer. Postgrad Med J 84:478–97, 2008PubMedCrossRef
2.
go back to reference Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D: Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2:135–142, 2007CrossRef Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D: Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2:135–142, 2007CrossRef
3.
go back to reference Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5:85–98, 2010PubMedCrossRef Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5:85–98, 2010PubMedCrossRef
4.
go back to reference Kitasaka T, Sakashita M, Mori K, Suenaga Y, Nawano S: A method for extracting pancreas regions from four-phase contrasted 3D abdominal CT images. Int J Comput Assist Radiol Surg 3:40, 2008 Kitasaka T, Sakashita M, Mori K, Suenaga Y, Nawano S: A method for extracting pancreas regions from four-phase contrasted 3D abdominal CT images. Int J Comput Assist Radiol Surg 3:40, 2008
5.
go back to reference Wolz R, Chu C, Misawa K, Mori K, Rueckert D: Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. MICCAI LNCS 7510:10–17, 2012 Wolz R, Chu C, Misawa K, Mori K, Rueckert D: Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. MICCAI LNCS 7510:10–17, 2012
6.
go back to reference McNulty NJ, Francis IR, Platt JF, Cohan RH, Korobkin M, Gebremariam A: Multi-detector row helical CT of the pancreas: effect of contrast-enhanced multiphasic imaging on enhancement of the pancreas, peripancreatic vasculature and pancreatic adenocarcinoma. Radiology 220:97–102, 2001PubMedCrossRef McNulty NJ, Francis IR, Platt JF, Cohan RH, Korobkin M, Gebremariam A: Multi-detector row helical CT of the pancreas: effect of contrast-enhanced multiphasic imaging on enhancement of the pancreas, peripancreatic vasculature and pancreatic adenocarcinoma. Radiology 220:97–102, 2001PubMedCrossRef
7.
go back to reference Miller FH, Butler RS, Hoff FL, Fitzgerald SW, Nemcek Jr, AA, Gore RM: Using triphasic helical CT to detect focal hepatic lesions in patients with neoplasms. AJR Am J Roentgenol 171:643–649, 1998PubMedCrossRef Miller FH, Butler RS, Hoff FL, Fitzgerald SW, Nemcek Jr, AA, Gore RM: Using triphasic helical CT to detect focal hepatic lesions in patients with neoplasms. AJR Am J Roentgenol 171:643–649, 1998PubMedCrossRef
8.
go back to reference Erdt M, Kirschner M, Steger S, and Wesarg S: Fast automatic liver segmentation combining learned shape priors with observed shape deviation. In: IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2010, pp 249–254 Erdt M, Kirschner M, Steger S, and Wesarg S: Fast automatic liver segmentation combining learned shape priors with observed shape deviation. In: IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2010, pp 249–254
9.
go back to reference Erdt M, Raspe M, Suehling M: Automatic hepatic vessel segmentation using graphics hardware. Medical Imaging and Augmented Reality 5128:403–412, 2008CrossRef Erdt M, Raspe M, Suehling M: Automatic hepatic vessel segmentation using graphics hardware. Medical Imaging and Augmented Reality 5128:403–412, 2008CrossRef
10.
go back to reference Drechsler K, Laura CO: Hierachical decomposition of vessel skeletons for graph creation and feature extraction. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010, pp 456–461 Drechsler K, Laura CO: Hierachical decomposition of vessel skeletons for graph creation and feature extraction. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010, pp 456–461
11.
go back to reference Zhen Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D: Fast automatic heart chamber segmentation from 3d ct data using marginal space learning and steerable features. In: 11th Int. Conf. on Computer Vision (ICCV), 2007, pp 1–8 Zhen Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D: Fast automatic heart chamber segmentation from 3d ct data using marginal space learning and steerable features. In: 11th Int. Conf. on Computer Vision (ICCV), 2007, pp 1–8
12.
go back to reference Hastie T, Tibshirani R, Friedman J: The elements of statistical learning: data mining, inference, and prediction. The Mathematical Intelligencer 27:83–85, 2005CrossRef Hastie T, Tibshirani R, Friedman J: The elements of statistical learning: data mining, inference, and prediction. The Mathematical Intelligencer 27:83–85, 2005CrossRef
13.
go back to reference Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and regression trees. Chapman & Hall, New York, 1984 Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and regression trees. Chapman & Hall, New York, 1984
14.
go back to reference Felzenszwalb PF, Huttenlocher DP: Efficient belief propagation for early vision. Int J Comput Vis 70:41–54, 2006CrossRef Felzenszwalb PF, Huttenlocher DP: Efficient belief propagation for early vision. Int J Comput Vis 70:41–54, 2006CrossRef
15.
go back to reference Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models—their training and application. Comput Vis Image Underst 61:38–59, 1995CrossRef Cootes TF, Taylor CJ, Cooper DH, Graham J: Active shape models—their training and application. Comput Vis Image Underst 61:38–59, 1995CrossRef
16.
go back to reference Kirschner M, Wesarg S: Construction of groupwise consistent shape parameterizations by propagation. In: Dawant BM et al. (eds.) Medical Imaging 2010. Image Processing, 762352, Bellingham, WA, SPIE, 2010, pp 14–16 Kirschner M, Wesarg S: Construction of groupwise consistent shape parameterizations by propagation. In: Dawant BM et al. (eds.) Medical Imaging 2010. Image Processing, 762352, Bellingham, WA, SPIE, 2010, pp 14–16
17.
go back to reference Kirschner M, Wesarg S: Automatische Initialisierung von Formmodellen mittels modellbasierter Registrierung. Bildverarbeitung für die Medizin. Informatik aktuell, 2011. doi:10.1007/978-3-642-19335-4_16 Kirschner M, Wesarg S: Automatische Initialisierung von Formmodellen mittels modellbasierter Registrierung. Bildverarbeitung für die Medizin. Informatik aktuell, 2011. doi:10.​1007/​978-3-642-19335-4_​16
18.
go back to reference Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu DS, Rau AM, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1256, 2009PubMedCrossRef Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, Kainmüller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu DS, Rau AM, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28:1251–1256, 2009PubMedCrossRef
Metadata
Title
Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images
Authors
Matthias Hammon
Alexander Cavallaro
Marius Erdt
Peter Dankerl
Matthias Kirschner
Klaus Drechsler
Stefan Wesarg
Michael Uder
Rolf Janka
Publication date
01-12-2013
Publisher
Springer US
Published in
Journal of Imaging Informatics in Medicine / Issue 6/2013
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-013-9586-7

Other articles of this Issue 6/2013

Journal of Digital Imaging 6/2013 Go to the issue