Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 4/2015

Open Access 01-07-2015 | SSIEM 2014

Mitochondrial transcript maturation and its disorders

Authors: Lindsey Van Haute, Sarah F. Pearce, Christopher A. Powell, Aaron R. D’Souza, Thomas J. Nicholls, Michal Minczuk

Published in: Journal of Inherited Metabolic Disease | Issue 4/2015

Login to get access

Abstract

Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.
Literature
go back to reference Agaronyan K, Morozov YI, Anikin M, Temiakov D (2015) Mitochondrial biology. Replication-transcription switch in human mitochondria. Science 347:548–551PubMed Agaronyan K, Morozov YI, Anikin M, Temiakov D (2015) Mitochondrial biology. Replication-transcription switch in human mitochondria. Science 347:548–551PubMed
go back to reference Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V (2015) Ribosome. The structure of the human mitochondrial ribosome. Science 348:95–98PubMed Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V (2015) Ribosome. The structure of the human mitochondrial ribosome. Science 348:95–98PubMed
go back to reference Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMed Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMed
go back to reference Antonicka H, Shoubridge EA (2015) Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Reports 10:920–932 Antonicka H, Shoubridge EA (2015) Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Reports 10:920–932
go back to reference Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17:386–398PubMed Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17:386–398PubMed
go back to reference Asahara H, Nameki N, Hasegawa T (1998) In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J Mol Biol 283:605–618PubMed Asahara H, Nameki N, Hasegawa T (1998) In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J Mol Biol 283:605–618PubMed
go back to reference Baer RJ, Dubin DT (1981) Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucl Acids Res 9:323–337PubMedCentralPubMed Baer RJ, Dubin DT (1981) Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucl Acids Res 9:323–337PubMedCentralPubMed
go back to reference Bai Y, Srivastava SK, Chang JH, Manley JL, Tong L (2011) Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Mol Cell 41:311–320PubMedCentralPubMed Bai Y, Srivastava SK, Chang JH, Manley JL, Tong L (2011) Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Mol Cell 41:311–320PubMedCentralPubMed
go back to reference Bare LA, Uhlenbeck OC (1986) Specific substitution into the anticodon loop of yeast tyrosine transfer RNA. Biochemistry 25:5825–5830PubMed Bare LA, Uhlenbeck OC (1986) Specific substitution into the anticodon loop of yeast tyrosine transfer RNA. Biochemistry 25:5825–5830PubMed
go back to reference Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509PubMedCentralPubMed Baruffini E, Dallabona C, Invernizzi F et al (2013) MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast. Hum Mutat 34:1501–1509PubMedCentralPubMed
go back to reference Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK (2009) A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 5, e1000590PubMedCentralPubMed Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK (2009) A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 5, e1000590PubMedCentralPubMed
go back to reference Becker L, Kling E, Schiller E et al (2014) MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy. PLoS One 9, e114918PubMedCentralPubMed Becker L, Kling E, Schiller E et al (2014) MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy. PLoS One 9, e114918PubMedCentralPubMed
go back to reference Bilbille Y, Gustilo EM, Harris KA et al (2011) The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 406:257–274PubMedCentralPubMed Bilbille Y, Gustilo EM, Harris KA et al (2011) The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 406:257–274PubMedCentralPubMed
go back to reference Bindoff LA, Howell N, Poulton J et al (1993) Abnormal RNA processing associated with a novel tRNA mutation in mitochondrial DNA. A potential disease mechanism. J Biol Chem 268:19559–19564PubMed Bindoff LA, Howell N, Poulton J et al (1993) Abnormal RNA processing associated with a novel tRNA mutation in mitochondrial DNA. A potential disease mechanism. J Biol Chem 268:19559–19564PubMed
go back to reference Boczonadi V, Horvath R (2014) Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 48:77–84PubMedCentralPubMed Boczonadi V, Horvath R (2014) Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 48:77–84PubMedCentralPubMed
go back to reference Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615PubMedCentralPubMed Boczonadi V, Smith PM, Pyle A et al (2013) Altered 2-thiouridylation impairs mitochondrial translation in reversible infantile respiratory chain deficiency. Hum Mol Genet 22:4602–4615PubMedCentralPubMed
go back to reference Bonnefond L, Florentz C, Giege R, Rudinger-Thirion J (2008) Decreased aminoacylation in pathology-related mutants of mitochondrial tRNATyr is associated with structural perturbations in tRNA architecture. RNA 14:641–648PubMedCentralPubMed Bonnefond L, Florentz C, Giege R, Rudinger-Thirion J (2008) Decreased aminoacylation in pathology-related mutants of mitochondrial tRNATyr is associated with structural perturbations in tRNA architecture. RNA 14:641–648PubMedCentralPubMed
go back to reference Bornstein B, Mas JA, Patrono C et al (2005) Comparative analysis of the pathogenic mechanisms associated with the G8363A and A8296G mutations in the mitochondrial tRNA(Lys) gene. Biochem J 387:773–778PubMedCentralPubMed Bornstein B, Mas JA, Patrono C et al (2005) Comparative analysis of the pathogenic mechanisms associated with the G8363A and A8296G mutations in the mitochondrial tRNA(Lys) gene. Biochem J 387:773–778PubMedCentralPubMed
go back to reference Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ (2013) Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucl Acids Res 41:1223–1240PubMedCentralPubMed Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ (2013) Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucl Acids Res 41:1223–1240PubMedCentralPubMed
go back to reference Brown A, Amunts A, Bai XC et al (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346:718–722PubMedCentralPubMed Brown A, Amunts A, Bai XC et al (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346:718–722PubMedCentralPubMed
go back to reference Brule H, Holmes WM, Keith G, Giege R, Florentz C (1998) Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Nucl Acids Res 26:537–543PubMedCentralPubMed Brule H, Holmes WM, Keith G, Giege R, Florentz C (1998) Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Nucl Acids Res 26:537–543PubMedCentralPubMed
go back to reference Brule H, Elliott M, Redlak M, Zehner ZE, Holmes WM (2004) Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Biochemistry 43:9243–9255PubMed Brule H, Elliott M, Redlak M, Zehner ZE, Holmes WM (2004) Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Biochemistry 43:9243–9255PubMed
go back to reference Bruni F, Gramegna P, Oliveira JM, Lightowlers RN, Chrzanowska-Lightowlers ZM (2013) REXO2 is an oligoribonuclease active in human mitochondria. PLoS One 8, e64670PubMedCentralPubMed Bruni F, Gramegna P, Oliveira JM, Lightowlers RN, Chrzanowska-Lightowlers ZM (2013) REXO2 is an oligoribonuclease active in human mitochondria. PLoS One 8, e64670PubMedCentralPubMed
go back to reference Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP (2011) Involvement of human ELAC2 gene product in 3′ end processing of mitochondrial tRNAs. RNA Biol 8:616–626PubMed Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP (2011) Involvement of human ELAC2 gene product in 3′ end processing of mitochondrial tRNAs. RNA Biol 8:616–626PubMed
go back to reference Bykhovskaya Y, Shohat M, Ehrenman K et al (1998) Evidence for complex nuclear inheritance in a pedigree with nonsyndromic deafness due to a homoplasmic mitochondrial mutation. Am J Med Genet 77:421–426PubMed Bykhovskaya Y, Shohat M, Ehrenman K et al (1998) Evidence for complex nuclear inheritance in a pedigree with nonsyndromic deafness due to a homoplasmic mitochondrial mutation. Am J Med Genet 77:421–426PubMed
go back to reference Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004a) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308PubMedCentralPubMed Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004a) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308PubMedCentralPubMed
go back to reference Bykhovskaya Y, Mengesha E, Wang D et al (2004b) Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol Genet Metab 82:27–32PubMed Bykhovskaya Y, Mengesha E, Wang D et al (2004b) Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol Genet Metab 82:27–32PubMed
go back to reference Cabello-Villegas J, Winkler ME, Nikonowicz EP (2002) Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). J Mol Biol 319:1015–1034PubMed Cabello-Villegas J, Winkler ME, Nikonowicz EP (2002) Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). J Mol Biol 319:1015–1034PubMed
go back to reference Camara Y, Asin-Cayuela J, Park CB et al (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 13:527–539PubMed Camara Y, Asin-Cayuela J, Park CB et al (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab 13:527–539PubMed
go back to reference Chakraborty PK, Schmitz-Abe K, Kennedy EK et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871PubMed Chakraborty PK, Schmitz-Abe K, Kennedy EK et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871PubMed
go back to reference Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643PubMed Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643PubMed
go back to reference Chen H-W, Rainey RN, Balatoni CE et al (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487PubMedCentralPubMed Chen H-W, Rainey RN, Balatoni CE et al (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487PubMedCentralPubMed
go back to reference Chinnery PF, Howell N, Lightowlers RN, Turnbull DM (1997) Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 120(Pt 10):1713–1721PubMed Chinnery PF, Howell N, Lightowlers RN, Turnbull DM (1997) Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 120(Pt 10):1713–1721PubMed
go back to reference Christianson TW, Clayton DA (1988) A tridecamer DNA sequence supports human mitochondrial RNA 3′-end formation in vitro. Mol Cell Biol 8:4502–4509PubMedCentralPubMed Christianson TW, Clayton DA (1988) A tridecamer DNA sequence supports human mitochondrial RNA 3′-end formation in vitro. Mol Cell Biol 8:4502–4509PubMedCentralPubMed
go back to reference Chujo T, Suzuki T (2012) Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA (New York, NY) 18:2269–2276 Chujo T, Suzuki T (2012) Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA (New York, NY) 18:2269–2276
go back to reference Chujo T, Ohira T, Sakaguchi Y et al (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucl Acids Res 40:8033–8047PubMedCentralPubMed Chujo T, Ohira T, Sakaguchi Y et al (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucl Acids Res 40:8033–8047PubMedCentralPubMed
go back to reference Colby G, Wu M, Tzagoloff A (1998) MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol Chem 273:27945–27952PubMed Colby G, Wu M, Tzagoloff A (1998) MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol Chem 273:27945–27952PubMed
go back to reference Cotney J, Shadel GS (2006) Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J Mol Evol 63:707–717PubMed Cotney J, Shadel GS (2006) Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J Mol Evol 63:707–717PubMed
go back to reference Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660PubMedCentralPubMed Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660PubMedCentralPubMed
go back to reference Dairaghi DJ, Shadel GS, Clayton DA (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol 249:11–28PubMed Dairaghi DJ, Shadel GS, Clayton DA (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol 249:11–28PubMed
go back to reference Dalla Rosa I, Durigon R, Pearce SF et al (2014) MPV17L2 is required for ribosome assembly in mitochondria. Nucl Acids Res 42:8500–8515PubMedCentralPubMed Dalla Rosa I, Durigon R, Pearce SF et al (2014) MPV17L2 is required for ribosome assembly in mitochondria. Nucl Acids Res 42:8500–8515PubMedCentralPubMed
go back to reference Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351PubMed Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351PubMed
go back to reference Decoster E, Vassal A, Faye G (1993) MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J Mol Biol 232:79–88PubMed Decoster E, Vassal A, Faye G (1993) MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J Mol Biol 232:79–88PubMed
go back to reference Degoul F, Brule H, Cepanec C, et al (1998) Isoleucylation properties of native human mitochondrial tRNAIle and tRNAIle transcripts. Implications for cardiomyopathy-related point mutations (4269, 4317) in thetRNAIle gene. Hum Mol Genet 7:347–354 Degoul F, Brule H, Cepanec C, et al (1998) Isoleucylation properties of native human mitochondrial tRNAIle and tRNAIle transcripts. Implications for cardiomyopathy-related point mutations (4269, 4317) in thetRNAIle gene. Hum Mol Genet 7:347–354
go back to reference Deutschmann AJ, Amberger A, Zavadil C et al (2014) Mutation or knock-down of 17beta-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 23:3618–3628PubMed Deutschmann AJ, Amberger A, Zavadil C et al (2014) Mutation or knock-down of 17beta-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 23:3618–3628PubMed
go back to reference Diffley JF, Stillman B (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A 88:7864–7868PubMedCentralPubMed Diffley JF, Stillman B (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A 88:7864–7868PubMedCentralPubMed
go back to reference Diodato D, Ghezzi D, Tiranti V (2014) The mitochondrial aminoacyl tRNA synthetases: genes and syndromes. Int J Cell Biol 2014:787956PubMedCentralPubMed Diodato D, Ghezzi D, Tiranti V (2014) The mitochondrial aminoacyl tRNA synthetases: genes and syndromes. Int J Cell Biol 2014:787956PubMedCentralPubMed
go back to reference Dubin DT, Taylor RH (1978) Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J Mol Biol 121:523–540PubMed Dubin DT, Taylor RH (1978) Modification of mitochondrial ribosomal RNA from hamster cells: the presence of GmG and late-methylated UmGmU in the large subunit (17S) RNA. J Mol Biol 121:523–540PubMed
go back to reference Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294PubMed Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294PubMed
go back to reference Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G (1997) The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J 16:1066–1079PubMedCentralPubMed Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G (1997) The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J 16:1066–1079PubMedCentralPubMed
go back to reference Fernandez-Vizarra E, Berardinelli A, Valente L, Tiranti V, Zeviani M (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180PubMedCentralPubMed Fernandez-Vizarra E, Berardinelli A, Valente L, Tiranti V, Zeviani M (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180PubMedCentralPubMed
go back to reference Fleming MD (2011) Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology Am Soc Hematol Educ Program 2011:525–531PubMed Fleming MD (2011) Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology Am Soc Hematol Educ Program 2011:525–531PubMed
go back to reference Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three new cases. JIMD reports 11:117–123PubMedCentralPubMed Gaignard P, Gonzales E, Ackermann O et al (2013) Mitochondrial infantile liver disease due to TRMU gene mutations: three new cases. JIMD reports 11:117–123PubMedCentralPubMed
go back to reference Garstka HL, Schmitt WE, Schultz J et al (2003) Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucl Acids Res 31:5039–5047PubMedCentralPubMed Garstka HL, Schmitt WE, Schultz J et al (2003) Import of mitochondrial transcription factor A (TFAM) into rat liver mitochondria stimulates transcription of mitochondrial DNA. Nucl Acids Res 31:5039–5047PubMedCentralPubMed
go back to reference Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087PubMedCentralPubMed Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087PubMedCentralPubMed
go back to reference Gohil VM, Nilsson R, Ca B-T, Luo B, Root DE, Mootha VK (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 285:13742–13747PubMedCentralPubMed Gohil VM, Nilsson R, Ca B-T, Luo B, Root DE, Mootha VK (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 285:13742–13747PubMedCentralPubMed
go back to reference Gong S, Peng Y, Jiang P, et al (2014) A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleid Acids Research 42:8039–8048 Gong S, Peng Y, Jiang P, et al (2014) A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleid Acids Research 42:8039–8048
go back to reference Greber BJ, Boehringer D, Leitner A et al (2014) Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515–519PubMed Greber BJ, Boehringer D, Leitner A et al (2014) Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515–519PubMed
go back to reference Grosshans H, Lecointe F, Grosjean H, Hurt E, Simos G (2001) Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast. J Biol Chem 276:46333–46339PubMed Grosshans H, Lecointe F, Grosjean H, Hurt E, Simos G (2001) Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast. J Biol Chem 276:46333–46339PubMed
go back to reference Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223PubMedCentralPubMed Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223PubMedCentralPubMed
go back to reference Haack TB, Gorza M, Danhauser K et al (2014) Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab 111:342–352PubMed Haack TB, Gorza M, Danhauser K et al (2014) Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab 111:342–352PubMed
go back to reference Hao H, Moraes CT (1997) A disease-associated G5703A mutation in human mitochondrial DNA causes a conformational change and a marked decrease in steady-state levels of mitochondrial tRNA(Asn). Mol Cell Biol 17:6831–6837 Hao H, Moraes CT (1997) A disease-associated G5703A mutation in human mitochondrial DNA causes a conformational change and a marked decrease in steady-state levels of mitochondrial tRNA(Asn). Mol Cell Biol 17:6831–6837
go back to reference Harmel J, Ruzzenente B, Terzioglu M, Spåhr H, Falkenberg M, Larsson NG (2013) The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria. J Biol Chem 288:15510–15519PubMedCentralPubMed Harmel J, Ruzzenente B, Terzioglu M, Spåhr H, Falkenberg M, Larsson NG (2013) The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria. J Biol Chem 288:15510–15519PubMedCentralPubMed
go back to reference Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC (1993) In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 32:7617–7622PubMed Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC (1993) In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 32:7617–7622PubMed
go back to reference Hayashi J, Ohta S, Takai D et al (1993) Accumulation of mtDNA with a mutation at position 3271 in tRNA(Leu)(UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun 197:1049–1055PubMed Hayashi J, Ohta S, Takai D et al (1993) Accumulation of mtDNA with a mutation at position 3271 in tRNA(Leu)(UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun 197:1049–1055PubMed
go back to reference Helm M, Brule H, Degoul F et al (1998) The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucl Acids Res 26:1636–1643PubMedCentralPubMed Helm M, Brule H, Degoul F et al (1998) The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucl Acids Res 26:1636–1643PubMedCentralPubMed
go back to reference Helm M, Giegé R, Florentz C (1999) A Watson−Crick base-pair-disrupting methyl group (m 1 A9) is sufficient for cloverleaf folding of human mitochondrial tRNA Lys. Biochemistry 38:13338–13346PubMed Helm M, Giegé R, Florentz C (1999) A Watson−Crick base-pair-disrupting methyl group (m 1 A9) is sufficient for cloverleaf folding of human mitochondrial tRNA Lys. Biochemistry 38:13338–13346PubMed
go back to reference Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474PubMed Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474PubMed
go back to reference Hopkinson A, Levinger L (2008) Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis. RNA Biol 5:104–111PubMed Hopkinson A, Levinger L (2008) Effects of conserved D/T loop substitutions in the pre-tRNA substrate on tRNase Z catalysis. RNA Biol 5:104–111PubMed
go back to reference Jesina P, Tesarova M, Fornuskova D et al (2004) Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 383:561–571PubMedCentralPubMed Jesina P, Tesarova M, Fornuskova D et al (2004) Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J 383:561–571PubMedCentralPubMed
go back to reference Johansson MJO, Esberg A, Huang B, Björk GR, Byström AS (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28:3301–3312PubMedCentralPubMed Johansson MJO, Esberg A, Huang B, Björk GR, Byström AS (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28:3301–3312PubMedCentralPubMed
go back to reference Jourdain AA, Koppen M, Wydro M et al (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:399–410PubMedCentralPubMed Jourdain AA, Koppen M, Wydro M et al (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:399–410PubMedCentralPubMed
go back to reference Jourdain AA, Koppen M, Rodley CD et al (2015) A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Reports 10:1110–1121PubMed Jourdain AA, Koppen M, Rodley CD et al (2015) A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Reports 10:1110–1121PubMed
go back to reference Kaushal PS, Sharma MR, Booth TM et al (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 111:7284–7289PubMedCentralPubMed Kaushal PS, Sharma MR, Booth TM et al (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 111:7284–7289PubMedCentralPubMed
go back to reference Kazak L, Reyes A, Duncan AL et al (2013) Alternative translation initiation augments the human mitochondrial proteome. Nucl Acids Res 41:2354–2369PubMedCentralPubMed Kazak L, Reyes A, Duncan AL et al (2013) Alternative translation initiation augments the human mitochondrial proteome. Nucl Acids Res 41:2354–2369PubMedCentralPubMed
go back to reference Kelley SO, Steinberg SV, Schimmel P et al (2000) Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat Struct Biol 7:862–865 Kelley SO, Steinberg SV, Schimmel P et al (2000) Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat Struct Biol 7:862–865
go back to reference Khidr L, Wu G, Davila A, Procaccio V, Wallace D, Lee W-H (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073PubMedCentralPubMed Khidr L, Wu G, Davila A, Procaccio V, Wallace D, Lee W-H (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073PubMedCentralPubMed
go back to reference King MP, Koga Y, Davidson M, Schon EA (1992) Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490PubMedCentralPubMed King MP, Koga Y, Davidson M, Schon EA (1992) Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490PubMedCentralPubMed
go back to reference Kirino Y, Yasukawa T, Ohta S et al (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 101:15070–15075PubMedCentralPubMed Kirino Y, Yasukawa T, Ohta S et al (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci U S A 101:15070–15075PubMedCentralPubMed
go back to reference Koga A, Koga Y, Akita Y et al (2003) Increased mitochondrial processing intermediates associated with three tRNA(Leu(UUR)) gene mutations. Neuromuscul Disord 13:259–262PubMed Koga A, Koga Y, Akita Y et al (2003) Increased mitochondrial processing intermediates associated with three tRNA(Leu(UUR)) gene mutations. Neuromuscul Disord 13:259–262PubMed
go back to reference Konovalova S, Tyynismaa H (2013) Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol Genet Metab 108:206–211PubMed Konovalova S, Tyynismaa H (2013) Mitochondrial aminoacyl-tRNA synthetases in human disease. Mol Genet Metab 108:206–211PubMed
go back to reference Kopajtich R, Nicholls TJ, Rorbach J et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95:708–720PubMedCentralPubMed Kopajtich R, Nicholls TJ, Rorbach J et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95:708–720PubMedCentralPubMed
go back to reference Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58:391–397PubMed Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58:391–397PubMed
go back to reference Lamichhane TN, Blewett NH, Crawford AK et al (2013a) Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol 33:2918–2929PubMedCentralPubMed Lamichhane TN, Blewett NH, Crawford AK et al (2013a) Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol 33:2918–2929PubMedCentralPubMed
go back to reference Lamichhane TN, Mattijssen S, Maraia RJ (2013b) Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 33:4900–4908PubMedCentralPubMed Lamichhane TN, Mattijssen S, Maraia RJ (2013b) Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Mol Cell Biol 33:4900–4908PubMedCentralPubMed
go back to reference Lee KW, Bogenhagen DF (2014) Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 289:24936–24942PubMed Lee KW, Bogenhagen DF (2014) Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 289:24936–24942PubMed
go back to reference Lee N, Daly MJ, Delmonte T et al (2001) A genomewide linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome oxidase deficiency to 2p16. Am J Hum Genet 68:397–409PubMedCentralPubMed Lee N, Daly MJ, Delmonte T et al (2001) A genomewide linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome oxidase deficiency to 2p16. Am J Hum Genet 68:397–409PubMedCentralPubMed
go back to reference Lee KW, Okot-Kotber C, LaComb JF, Bogenhagen DF (2013) Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid. J Biol Chem 288:31386–31399PubMedCentralPubMed Lee KW, Okot-Kotber C, LaComb JF, Bogenhagen DF (2013) Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid. J Biol Chem 288:31386–31399PubMedCentralPubMed
go back to reference Levinger L, Serjanov D (2012) Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3′ end processing and tRNA structure. RNA Biol 9:283–291PubMedCentralPubMed Levinger L, Serjanov D (2012) Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3′ end processing and tRNA structure. RNA Biol 9:283–291PubMedCentralPubMed
go back to reference Levinger L, Giege R, Florentz C (2003) Pathology-related substitutions in human mitochondrial tRNA(Ile) reduce precursor 3′ end processing efficiency in vitro. Nucl Acids Res 31:1904–1912PubMedCentralPubMed Levinger L, Giege R, Florentz C (2003) Pathology-related substitutions in human mitochondrial tRNA(Ile) reduce precursor 3′ end processing efficiency in vitro. Nucl Acids Res 31:1904–1912PubMedCentralPubMed
go back to reference Levinger L, Oestreich I, Florentz C, Morl M (2004) A pathogenesis-associated mutation in human mitochondrial tRNALeu(UUR) leads to reduced 3′-end processing and CCA addition. J Mol Biol 337:535–544PubMed Levinger L, Oestreich I, Florentz C, Morl M (2004) A pathogenesis-associated mutation in human mitochondrial tRNALeu(UUR) leads to reduced 3′-end processing and CCA addition. J Mol Biol 337:535–544PubMed
go back to reference Li X, Guan M-X (2002) A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 22:7701–7711PubMedCentralPubMed Li X, Guan M-X (2002) A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation. Mol Cell Biol 22:7701–7711PubMedCentralPubMed
go back to reference Li X, Li R, Lin X, Guan M-X (2002) Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 277:27256–27264PubMed Li X, Li R, Lin X, Guan M-X (2002) Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem 277:27256–27264PubMed
go back to reference Lin CL, Wang Y-T, Yang W-Z, Hsiao Y-Y, Yuan HS (2012) Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucl Acids Res 40:4146–4157PubMedCentralPubMed Lin CL, Wang Y-T, Yang W-Z, Hsiao Y-Y, Yuan HS (2012) Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucl Acids Res 40:4146–4157PubMedCentralPubMed
go back to reference Ling J, Roy H, Qin D et al (2007) Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Proc Natl Acad Sci U S A 104:15299–15304PubMedCentralPubMed Ling J, Roy H, Qin D et al (2007) Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Proc Natl Acad Sci U S A 104:15299–15304PubMedCentralPubMed
go back to reference Litonin D, Sologub M, Shi Y et al (2010) Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 285:18129–18133PubMedCentralPubMed Litonin D, Sologub M, Shi Y et al (2010) Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 285:18129–18133PubMedCentralPubMed
go back to reference Mancuso M, Filosto M, Mootha VK et al (2004) A novel mitochondrial tRNAPhe mutation causes MERRF syndrome. Neurology 62:2119–2121PubMed Mancuso M, Filosto M, Mootha VK et al (2004) A novel mitochondrial tRNAPhe mutation causes MERRF syndrome. Neurology 62:2119–2121PubMed
go back to reference Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99PubMed Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99PubMed
go back to reference Merante F, Petrova-Benedict R, MacKay N et al (1993) A biochemically distinct form of cytochrome oxidase (COX) deficiency in the Saguenay-Lac-Saint-Jean region of Quebec. Am J Hum Genet 53:481–487PubMedCentralPubMed Merante F, Petrova-Benedict R, MacKay N et al (1993) A biochemically distinct form of cytochrome oxidase (COX) deficiency in the Saguenay-Lac-Saint-Jean region of Quebec. Am J Hum Genet 53:481–487PubMedCentralPubMed
go back to reference Metodiev MD, Lesko N, Park CB et al (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9:386–397PubMed Metodiev MD, Lesko N, Park CB et al (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9:386–397PubMed
go back to reference Minczuk M, Piwowarski J, Papworth MA et al (2002) Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucl Acids Res 30:5074–5086PubMedCentralPubMed Minczuk M, Piwowarski J, Papworth MA et al (2002) Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucl Acids Res 30:5074–5086PubMedCentralPubMed
go back to reference Minczuk M, Lilpop J, Boros J, Stepien PP (2005) The 5′ region of the human hSUV3 gene encoding mitochondrial DNA and RNA helicase: promoter characterization and alternative pre-mRNA splicing. Biochim Biophys Acta 1729:81–87PubMed Minczuk M, Lilpop J, Boros J, Stepien PP (2005) The 5′ region of the human hSUV3 gene encoding mitochondrial DNA and RNA helicase: promoter characterization and alternative pre-mRNA splicing. Biochim Biophys Acta 1729:81–87PubMed
go back to reference Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucl Acids Res 39:4284–4299PubMedCentralPubMed Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucl Acids Res 39:4284–4299PubMedCentralPubMed
go back to reference Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A 79:7195–7199PubMedCentralPubMed Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A 79:7195–7199PubMedCentralPubMed
go back to reference Mollers M, Maniura-Weber K, Kiseljakovic E, et al (2005) A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucl Acids Res 33:5647–5658 Mollers M, Maniura-Weber K, Kiseljakovic E, et al (2005) A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucl Acids Res 33:5647–5658
go back to reference Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34:151–159PubMed Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34:151–159PubMed
go back to reference Mootha VK, Lepage P, Miller K et al (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100:605–610PubMedCentralPubMed Mootha VK, Lepage P, Miller K et al (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100:605–610PubMedCentralPubMed
go back to reference Moraes CT, Ciacci F, Silvestri G et al (1993) Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul Disord 3:43–50PubMed Moraes CT, Ciacci F, Silvestri G et al (1993) Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul Disord 3:43–50PubMed
go back to reference Morin C, Mitchell G, Larochelle J et al (1993) Clinical, metabolic, and genetic aspects of cytochrome C oxidase deficiency in Saguenay-Lac-Saint-Jean. Am J Hum Genet 53:488–496PubMedCentralPubMed Morin C, Mitchell G, Larochelle J et al (1993) Clinical, metabolic, and genetic aspects of cytochrome C oxidase deficiency in Saguenay-Lac-Saint-Jean. Am J Hum Genet 53:488–496PubMedCentralPubMed
go back to reference Mourier A, Ruzzenente B, Brandt T, Kühlbrandt W, Larsson N-G (2014) Loss of LRPPRC causes ATP synthase deficiency. Hum Mol Genet 23:2580–2592PubMedCentralPubMed Mourier A, Ruzzenente B, Brandt T, Kühlbrandt W, Larsson N-G (2014) Loss of LRPPRC causes ATP synthase deficiency. Hum Mol Genet 23:2580–2592PubMedCentralPubMed
go back to reference Nagaike T, Suzuki T, Tomari Y et al (2001) Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J Biol Chem 276:40041–40049PubMed Nagaike T, Suzuki T, Tomari Y et al (2001) Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J Biol Chem 276:40041–40049PubMed
go back to reference Nagaike T, Suzuki T, Katoh T, Ueda T (2005) Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280:19721–19727PubMed Nagaike T, Suzuki T, Katoh T, Ueda T (2005) Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280:19721–19727PubMed
go back to reference Nakai Y, Umeda N, Suzuki T et al (2004) Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279:12363–12368PubMed Nakai Y, Umeda N, Suzuki T et al (2004) Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 279:12363–12368PubMed
go back to reference Neeve VCM, Pyle A, Boczonadi V et al (2013) Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT. Mitochondrion 13:743–748PubMedCentralPubMed Neeve VCM, Pyle A, Boczonadi V et al (2013) Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to autosomal recessive mutations in MTFMT. Mitochondrion 13:743–748PubMedCentralPubMed
go back to reference Nicholls TJ, Minczuk M (2014) In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 56:175–181PubMed Nicholls TJ, Minczuk M (2014) In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 56:175–181PubMed
go back to reference Nicholls TJ, Rorbach J, Minczuk M (2013) Mitochondria: mitochondrial RNA metabolism and human disease. Int J Biochem Cell Biol 45:845–849PubMed Nicholls TJ, Rorbach J, Minczuk M (2013) Mitochondria: mitochondrial RNA metabolism and human disease. Int J Biochem Cell Biol 45:845–849PubMed
go back to reference Ofengand J, Bakin A (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266:246–268PubMed Ofengand J, Bakin A (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266:246–268PubMed
go back to reference Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474PubMed Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474PubMed
go back to reference O'Sullivan M, Rutland P, Lucas D et al (2015) Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A > G associated hearing loss. Hum Mol Genet 24:1036–1044PubMed O'Sullivan M, Rutland P, Lucas D et al (2015) Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A > G associated hearing loss. Hum Mol Genet 24:1036–1044PubMed
go back to reference Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMedCentralPubMed Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123PubMedCentralPubMed
go back to reference Parisi MA, Xu B, Clayton DA (1993) A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol 13:1951–1961PubMedCentralPubMed Parisi MA, Xu B, Clayton DA (1993) A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol 13:1951–1961PubMedCentralPubMed
go back to reference Patton JR, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian N (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 280:19823–19828PubMed Patton JR, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian N (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation. J Biol Chem 280:19823–19828PubMed
go back to reference Perez-Cerda C, Garcia-Villoria J, Ofman R et al (2005) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: an X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr Res 58:488–491PubMed Perez-Cerda C, Garcia-Villoria J, Ofman R et al (2005) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: an X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr Res 58:488–491PubMed
go back to reference Piekna-Przybylska D, Decatur WA, Fournier MJ (2008) The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucl Acids Res 36:D178–183PubMedCentralPubMed Piekna-Przybylska D, Decatur WA, Fournier MJ (2008) The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucl Acids Res 36:D178–183PubMedCentralPubMed
go back to reference Posse V, Shahzad S, Falkenberg M, Hallberg BM, Gustafsson CM (2015) TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucl Acids Res 43:2615–2624PubMedCentralPubMed Posse V, Shahzad S, Falkenberg M, Hallberg BM, Gustafsson CM (2015) TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucl Acids Res 43:2615–2624PubMedCentralPubMed
go back to reference Poulsen JB, Andersen KR, Kjaer KH et al (2011) Human 2′-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucl Acids Res 39:3754–3770PubMedCentralPubMed Poulsen JB, Andersen KR, Kjaer KH et al (2011) Human 2′-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover. Nucl Acids Res 39:3754–3770PubMedCentralPubMed
go back to reference Powell CA, Nicholls TJ, Minczuk M (2015) Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 6:79PubMedCentralPubMed Powell CA, Nicholls TJ, Minczuk M (2015) Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 6:79PubMedCentralPubMed
go back to reference Putz J, Florentz C, Benseler F, Giege R (1994) A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol 1:580–582PubMed Putz J, Florentz C, Benseler F, Giege R (1994) A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol 1:580–582PubMed
go back to reference Rackham O, Davies SM, Shearwood AM, Hamilton KL, Whelan J, Filipovska A (2009) Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucl Acids Res 37:5859–5867PubMedCentralPubMed Rackham O, Davies SM, Shearwood AM, Hamilton KL, Whelan J, Filipovska A (2009) Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucl Acids Res 37:5859–5867PubMedCentralPubMed
go back to reference Raimundo N, Song L, Shutt TE et al (2012) Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148:716–726PubMedCentralPubMed Raimundo N, Song L, Shutt TE et al (2012) Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148:716–726PubMedCentralPubMed
go back to reference Rauschenberger K, Scholer K, Sass JO et al (2010) A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med 2:51–62PubMedCentralPubMed Rauschenberger K, Scholer K, Sass JO et al (2010) A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med 2:51–62PubMedCentralPubMed
go back to reference Reiter V, Matschkal DMS, Wagner M et al (2012) The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucl Acids Res 40:6235–6240PubMedCentralPubMed Reiter V, Matschkal DMS, Wagner M et al (2012) The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucl Acids Res 40:6235–6240PubMedCentralPubMed
go back to reference Rorbach J, Minczuk M (2012) The post-transcriptional life of mammalian mitochondrial RNA. Biochem J 444:357–373PubMed Rorbach J, Minczuk M (2012) The post-transcriptional life of mammalian mitochondrial RNA. Biochem J 444:357–373PubMed
go back to reference Rorbach J, Nicholls TJ, Minczuk M (2011) PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucl Acids Res 39:7750–7763PubMedCentralPubMed Rorbach J, Nicholls TJ, Minczuk M (2011) PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucl Acids Res 39:7750–7763PubMedCentralPubMed
go back to reference Rorbach J, Gammage PA, Minczuk M (2012) C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucl Acids Res 40:4097–4109PubMedCentralPubMed Rorbach J, Gammage PA, Minczuk M (2012) C7orf30 is necessary for biogenesis of the large subunit of the mitochondrial ribosome. Nucl Acids Res 40:4097–4109PubMedCentralPubMed
go back to reference Rorbach J, Bobrowicz AJ, Pearce S, Minczuk M (2014) Polyadenylation in bacteria and organelles. In Rorbach J, Bobrowicz AJ ed. Methods in Molecular Biology Polyadenylation, 211–227 Rorbach J, Bobrowicz AJ, Pearce S, Minczuk M (2014) Polyadenylation in bacteria and organelles. In Rorbach J, Bobrowicz AJ ed. Methods in Molecular Biology Polyadenylation, 211–227
go back to reference Rorbach J, Boesch P, Gammage PA et al (2014b) MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 25:2542–2555PubMedCentralPubMed Rorbach J, Boesch P, Gammage PA et al (2014b) MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 25:2542–2555PubMedCentralPubMed
go back to reference Rossmanith W (2011) Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS One 6, e19152PubMedCentralPubMed Rossmanith W (2011) Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS One 6, e19152PubMedCentralPubMed
go back to reference Rossmanith W, Holzmann J (2009) Processing mitochondrial (t) RNAs. Cell Cycle 8:1650–1653PubMed Rossmanith W, Holzmann J (2009) Processing mitochondrial (t) RNAs. Cell Cycle 8:1650–1653PubMed
go back to reference Rossmanith W, Karwan RM (1998) Impairment of tRNA processing by point mutations in mitochondrial tRNA(Leu)(UUR) associated with mitochondrial diseases. FEBS Lett 433:269–274PubMed Rossmanith W, Karwan RM (1998) Impairment of tRNA processing by point mutations in mitochondrial tRNA(Leu)(UUR) associated with mitochondrial diseases. FEBS Lett 433:269–274PubMed
go back to reference Ruzzenente B, Metodiev MD, Wredenberg A et al (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 31:443–456PubMedCentralPubMed Ruzzenente B, Metodiev MD, Wredenberg A et al (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 31:443–456PubMedCentralPubMed
go back to reference Sampson JR, Uhlenbeck OC (1988) Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A 85:1033–1037PubMedCentralPubMed Sampson JR, Uhlenbeck OC (1988) Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A 85:1033–1037PubMedCentralPubMed
go back to reference Sanchez MI, Mercer TR, Davies SM et al (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916PubMed Sanchez MI, Mercer TR, Davies SM et al (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916PubMed
go back to reference Sasarman F, Antonicka H, Shoubridge EA (2008) The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 17:3697–3707PubMed Sasarman F, Antonicka H, Shoubridge EA (2008) The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 17:3697–3707PubMed
go back to reference Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA (2010a) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA (2010a) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed
go back to reference Sasarman F, Brunel-guitton C, Antonicka H, Wai T, Shoubridge EA, Consortium L (2010b) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed Sasarman F, Brunel-guitton C, Antonicka H, Wai T, Shoubridge EA, Consortium L (2010b) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed
go back to reference Sasarman F, Nishimura T, Antonicka H, Weraarpachai W, Shoubridge EA, Consortium L (2015a) Tissue-specific responses to the LRPPRC founder mutation in French Canadian Leigh syndrome. Hum Mol Genet 24:480–491PubMed Sasarman F, Nishimura T, Antonicka H, Weraarpachai W, Shoubridge EA, Consortium L (2015a) Tissue-specific responses to the LRPPRC founder mutation in French Canadian Leigh syndrome. Hum Mol Genet 24:480–491PubMed
go back to reference Sasarman F, Thiffault I, Weraarpachai W et al (2015b) The 3′ addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet 24:2841–2847PubMed Sasarman F, Thiffault I, Weraarpachai W et al (2015b) The 3′ addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet 24:2841–2847PubMed
go back to reference Schaller A, Desetty R, Hahn D, et al (2011) Impairment of mitochondrial tRNAIle processing by a novel mutation associated with chronic progressive external ophthalmoplegia. Mitochondrion 11:488–-496 Schaller A, Desetty R, Hahn D, et al (2011) Impairment of mitochondrial tRNAIle processing by a novel mutation associated with chronic progressive external ophthalmoplegia. Mitochondrion 11:488–-496
go back to reference Schara U, von Kleist-Retzow J-C, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201PubMed Schara U, von Kleist-Retzow J-C, Lainka E et al (2011) Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis 34:197–201PubMed
go back to reference Schild C, Hahn D, Schaller A et al (2014) Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation. Amino Acids 46:1775–1783PubMed Schild C, Hahn D, Schaller A et al (2014) Mitochondrial leucine tRNA level and PTCD1 are regulated in response to leucine starvation. Amino Acids 46:1775–1783PubMed
go back to reference Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19PubMed Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19PubMed
go back to reference Seidel-Rogol BL, McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23–24PubMed Seidel-Rogol BL, McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23–24PubMed
go back to reference Seneca S, Abramowicz M, Lissens W, Muller MF, Vamos E, de Meirleir L (1996) A mitochondrial DNA microdeletion in a newborn girl with transient lactic acidosis. J Inherit Metab Dis 19:115–118PubMed Seneca S, Abramowicz M, Lissens W, Muller MF, Vamos E, de Meirleir L (1996) A mitochondrial DNA microdeletion in a newborn girl with transient lactic acidosis. J Inherit Metab Dis 19:115–118PubMed
go back to reference Shi Y, Dierckx A, Wanrooij PH et al (2012) Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc Natl Acad Sci U S A 109:16510–16515PubMedCentralPubMed Shi Y, Dierckx A, Wanrooij PH et al (2012) Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc Natl Acad Sci U S A 109:16510–16515PubMedCentralPubMed
go back to reference Shu Z, Vijayakumar S, Chen CF, Chen PL, Lee WH (2004) Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry 43:4781–4790PubMed Shu Z, Vijayakumar S, Chen CF, Chen PL, Lee WH (2004) Purified human SUV3p exhibits multiple-substrate unwinding activity upon conformational change. Biochemistry 43:4781–4790PubMed
go back to reference Shutt TE, Gray MW (2006) Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol Biol Evol 23:1169–1179PubMed Shutt TE, Gray MW (2006) Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol Biol Evol 23:1169–1179PubMed
go back to reference Sinha A, Köhrer C, Weber MHW et al (2014) Biochemical characterization of pathogenic mutations in human mitochondrial methionyl-tRNA formyltransferase. J Biol Chem 289:32729–32741PubMed Sinha A, Köhrer C, Weber MHW et al (2014) Biochemical characterization of pathogenic mutations in human mitochondrial methionyl-tRNA formyltransferase. J Biol Chem 289:32729–32741PubMed
go back to reference Sirum-Connolly K, Mason TL (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:1886–1889PubMed Sirum-Connolly K, Mason TL (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:1886–1889PubMed
go back to reference Sissler M, Helm M, Frugier M, Giege R, Florentz C (2004) Aminoacylation properties of pathology-related human mitochondrial tRNA(Lys) variants. RNA 10:841–853PubMedCentralPubMed Sissler M, Helm M, Frugier M, Giege R, Florentz C (2004) Aminoacylation properties of pathology-related human mitochondrial tRNA(Lys) variants. RNA 10:841–853PubMedCentralPubMed
go back to reference Slavotinek AM, Garcia ST, Chandratillake G et al (2014) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet. doi:10.1111/cge.12543 Slavotinek AM, Garcia ST, Chandratillake G et al (2014) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet. doi:10.​1111/​cge.​12543
go back to reference Slomovic S, Schuster G (2008) Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA 14:310–323PubMedCentralPubMed Slomovic S, Schuster G (2008) Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA 14:310–323PubMedCentralPubMed
go back to reference Slomovic S, Laufer D, Geiger D, Schuster G (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25:6427–6435PubMedCentralPubMed Slomovic S, Laufer D, Geiger D, Schuster G (2005) Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 25:6427–6435PubMedCentralPubMed
go back to reference Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47PubMed Small ID, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47PubMed
go back to reference Smith AC, Blackshaw JA, Robinson AJ (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucl Acids Res 40:D1160–1167PubMedCentralPubMed Smith AC, Blackshaw JA, Robinson AJ (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucl Acids Res 40:D1160–1167PubMedCentralPubMed
go back to reference Sohm B, Frugier M, Brule H, Olszak K, Przykorska A, Florentz C (2003) Towards understanding human mitochondrial leucine aminoacylation identity. J Mol Biol 328:995–1010PubMed Sohm B, Frugier M, Brule H, Olszak K, Przykorska A, Florentz C (2003) Towards understanding human mitochondrial leucine aminoacylation identity. J Mol Biol 328:995–1010PubMed
go back to reference Sondheimer N, Fang JK, Polyak E, Falk MJ, Avadhani NG (2010) Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription. Biochemistry 49:7467–7473PubMedCentralPubMed Sondheimer N, Fang JK, Polyak E, Falk MJ, Avadhani NG (2010) Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription. Biochemistry 49:7467–7473PubMedCentralPubMed
go back to reference Spahr H, Habermann B, Gustafsson CM, Larsson NG, Hallberg BM (2012) Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc Natl Acad Sci U S A 109:15253–15258PubMedCentralPubMed Spahr H, Habermann B, Gustafsson CM, Larsson NG, Hallberg BM (2012) Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proc Natl Acad Sci U S A 109:15253–15258PubMedCentralPubMed
go back to reference Spencer AC, Spremulli LL (2004) Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA. Nucl Acids Res 32:5464–5470PubMedCentralPubMed Spencer AC, Spremulli LL (2004) Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA. Nucl Acids Res 32:5464–5470PubMedCentralPubMed
go back to reference Spinola M, Galvan A, Pignatiello C et al (2005) Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 24:5502–5509PubMed Spinola M, Galvan A, Pignatiello C et al (2005) Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 24:5502–5509PubMed
go back to reference Sterky FH, Ruzzenente B, Gustafsson CM, Samuelsson T, Larsson N-G (2010) LRPPRC is a mitochondrial matrix protein that is conserved in metazoans. Biochem Biophys Res Commun 398:759–764PubMed Sterky FH, Ruzzenente B, Gustafsson CM, Samuelsson T, Larsson N-G (2010) LRPPRC is a mitochondrial matrix protein that is conserved in metazoans. Biochem Biophys Res Commun 398:759–764PubMed
go back to reference Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucl Acids Res 42:7346–7357PubMedCentralPubMed Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucl Acids Res 42:7346–7357PubMedCentralPubMed
go back to reference Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCentralPubMed Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589PubMedCentralPubMed
go back to reference Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329PubMed Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329PubMed
go back to reference Szczesny RJ, Obriot H, Paczkowska A et al (2007) Down-regulation of human RNA/DNA helicase SUV3 induces apoptosis by a caspase- and AIF-dependent pathway. Biol Cell 99:323–332PubMed Szczesny RJ, Obriot H, Paczkowska A et al (2007) Down-regulation of human RNA/DNA helicase SUV3 induces apoptosis by a caspase- and AIF-dependent pathway. Biol Cell 99:323–332PubMed
go back to reference Szczesny RJ, Borowski LS, Brzezniak LK et al (2010) Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucl Acids Res 38:279–298PubMedCentralPubMed Szczesny RJ, Borowski LS, Brzezniak LK et al (2010) Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucl Acids Res 38:279–298PubMedCentralPubMed
go back to reference Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77PubMed Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77PubMed
go back to reference Temperley RJ, Seneca SH, Tonska K et al (2003) Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum Mol Genet 12:2341–2348PubMed Temperley RJ, Seneca SH, Tonska K et al (2003) Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum Mol Genet 12:2341–2348PubMed
go back to reference Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Human mitochondrial mRNAs–like members of all families, similar but different. Biochim Biophys Acta 1797:1081–1085PubMedCentralPubMed Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Human mitochondrial mRNAs–like members of all families, similar but different. Biochim Biophys Acta 1797:1081–1085PubMedCentralPubMed
go back to reference Terzioglu M, Ruzzenente B, Harmel J et al (2013) MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab 17:618–626PubMed Terzioglu M, Ruzzenente B, Harmel J et al (2013) MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab 17:618–626PubMed
go back to reference Tiranti V, Savoia A, Forti F et al (1997) Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 6:615–625PubMed Tiranti V, Savoia A, Forti F et al (1997) Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 6:615–625PubMed
go back to reference Tischner C, Hofer A, Wulff V et al (2015) MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Hum Mol Genet 24:2247–2266PubMed Tischner C, Hofer A, Wulff V et al (2015) MTO1 mediates tissue specificity of OXPHOS defects via tRNA modification and translation optimization, which can be bypassed by dietary intervention. Hum Mol Genet 24:2247–2266PubMed
go back to reference Tomari Y, Hino N, Nagaike T, Suzuki T, Ueda T (2003) Decreased CCA-addition in human mitochondrial tRNAs bearing a pathogenic A4317G or A10044G mutation. J Biol Chem 278:16828–16833PubMed Tomari Y, Hino N, Nagaike T, Suzuki T, Ueda T (2003) Decreased CCA-addition in human mitochondrial tRNAs bearing a pathogenic A4317G or A10044G mutation. J Biol Chem 278:16828–16833PubMed
go back to reference Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP (2004) Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucl Acids Res 32:6001–6014PubMedCentralPubMed Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP (2004) Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucl Acids Res 32:6001–6014PubMedCentralPubMed
go back to reference Tucker EJ, Hershman SG, Köhrer C et al (2011) Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 14:428–434PubMedCentralPubMed Tucker EJ, Hershman SG, Köhrer C et al (2011) Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 14:428–434PubMedCentralPubMed
go back to reference Tuppen HA, Naess K, Kennaway NG et al (2012) Mutations in the mitochondrial tRNA Ser(AGY) gene are associated with deafness, retinal degeneration, myopathy and epilepsy. Eur J Hum Genet 20:897–904PubMedCentralPubMed Tuppen HA, Naess K, Kennaway NG et al (2012) Mutations in the mitochondrial tRNA Ser(AGY) gene are associated with deafness, retinal degeneration, myopathy and epilepsy. Eur J Hum Genet 20:897–904PubMedCentralPubMed
go back to reference Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280:1613–1624PubMed Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280:1613–1624PubMed
go back to reference Urbonavicius J (2003) Transfer RNA modifications that alter +1 frameshifting in general fail to affect −1 frameshifting. RNA 9:760–768PubMedCentralPubMed Urbonavicius J (2003) Transfer RNA modifications that alter +1 frameshifting in general fail to affect −1 frameshifting. RNA 9:760–768PubMedCentralPubMed
go back to reference Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873PubMedCentralPubMed Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–4873PubMedCentralPubMed
go back to reference Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668PubMed Uusimaa J, Jungbluth H, Fratter C et al (2011) Reversible infantile respiratory chain deficiency is a unique, genetically heterogenous mitochondrial disease. J Med Genet 48:660–668PubMed
go back to reference Vanlander AV, Menten B, Smet J et al (2014) Two siblings with homozygous pathogenic splice site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 36:222–231 Vanlander AV, Menten B, Smet J et al (2014) Two siblings with homozygous pathogenic splice site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 36:222–231
go back to reference Vedrenne V, Gowher A, De Lonlay P et al (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918PubMedCentralPubMed Vedrenne V, Gowher A, De Lonlay P et al (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918PubMedCentralPubMed
go back to reference Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucl Acids Res 40:11583–11593PubMedCentralPubMed Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucl Acids Res 40:11583–11593PubMedCentralPubMed
go back to reference Villarroya M, Prado S, Esteve JM et al (2008) Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 28:7514–7531PubMedCentralPubMed Villarroya M, Prado S, Esteve JM et al (2008) Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification. Mol Cell Biol 28:7514–7531PubMedCentralPubMed
go back to reference von Ameln S, Wang G, Boulouiz R et al (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927 von Ameln S, Wang G, Boulouiz R et al (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927
go back to reference Wang Z, Cotney J, Shadel GS (2007) Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J Biol Chem 282:12610–12618PubMedCentralPubMed Wang Z, Cotney J, Shadel GS (2007) Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J Biol Chem 282:12610–12618PubMedCentralPubMed
go back to reference Wang DD-h, Shu Z, Lieser A, Chen P-l, Lieser SA, Lee W-h (2009) Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3′-to-5′ directionality. J Biol Chem 284:20812–20821PubMedCentralPubMed Wang DD-h, Shu Z, Lieser A, Chen P-l, Lieser SA, Lee W-h (2009) Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3′-to-5′ directionality. J Biol Chem 284:20812–20821PubMedCentralPubMed
go back to reference Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM (2010) G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 107:16072–16077PubMedCentralPubMed Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM (2010) G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 107:16072–16077PubMedCentralPubMed
go back to reference Wilson WC, Hornig-Do HT, Bruni F et al (2014) A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Hum Mol Genet 23:6345–6355PubMedCentralPubMed Wilson WC, Hornig-Do HT, Bruni F et al (2014) A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Hum Mol Genet 23:6345–6355PubMedCentralPubMed
go back to reference Wydro M, Bobrowicz A, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Nucl Acids Res 38:3732–3742PubMedCentralPubMed Wydro M, Bobrowicz A, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Nucl Acids Res 38:3732–3742PubMedCentralPubMed
go back to reference Xu F, Morin C, Mitchell G, Ackerley C, Robinson BH (2004) The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 382:331–336PubMedCentralPubMed Xu F, Morin C, Mitchell G, Ackerley C, Robinson BH (2004) The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem J 382:331–336PubMedCentralPubMed
go back to reference Xu F, Ackerley C, Maj MC et al (2008a) Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. Biochem J 416:15–26PubMed Xu F, Ackerley C, Maj MC et al (2008a) Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. Biochem J 416:15–26PubMed
go back to reference Xu Z, O'Farrell HC, Rife JP, Culver GM (2008b) A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15:534–536PubMed Xu Z, O'Farrell HC, Rife JP, Culver GM (2008b) A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15:534–536PubMed
go back to reference Yakubovskaya E, Guja KE, Mejia E et al (2012) Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification. Structure 20:1940–1947PubMedCentralPubMed Yakubovskaya E, Guja KE, Mejia E et al (2012) Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification. Structure 20:1940–1947PubMedCentralPubMed
go back to reference Yan H, Zareen N, Levinger L (2006a) Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 281:3926–3935PubMed Yan H, Zareen N, Levinger L (2006a) Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 281:3926–3935PubMed
go back to reference Yan Q, Bykhovskaya Y, Li R et al (2006b) Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations. Biochem Biophys Res Commun 342:1130–1136PubMed Yan Q, Bykhovskaya Y, Li R et al (2006b) Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations. Biochem Biophys Res Commun 342:1130–1136PubMed
go back to reference Yang SY, He XY, Schulz H (2005) Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol Metab 16:167–175PubMed Yang SY, He XY, Schulz H (2005) Multiple functions of type 10 17beta-hydroxysteroid dehydrogenase. Trends Endocrinol Metab 16:167–175PubMed
go back to reference Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW (2010) Mitochondrial tRNA mutations and disease. Wiley Interdiscip Rev RNA 1:304–324PubMed Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW (2010) Mitochondrial tRNA mutations and disease. Wiley Interdiscip Rev RNA 1:304–324PubMed
go back to reference Yarham JW, Lamichhane TN, Pyle A et al (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 10, e1004424PubMedCentralPubMed Yarham JW, Lamichhane TN, Pyle A et al (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 10, e1004424PubMedCentralPubMed
go back to reference Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K (2000a) Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467:175–178PubMed Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K (2000a) Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 467:175–178PubMed
go back to reference Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K (2000b) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 275:4251–4257PubMed Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K (2000b) Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 275:4251–4257PubMed
go back to reference Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K (2001) Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802PubMedCentralPubMed Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K (2001) Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J 20:4794–4802PubMedCentralPubMed
go back to reference Yasukawa T, Kirino Y, Ishii N, et al (2005) Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett 579:2948–2952 Yasukawa T, Kirino Y, Ishii N, et al (2005) Wobble modification deficiency in mutant tRNAs in patients with mitochondrial diseases. FEBS Lett 579:2948–2952
go back to reference Yokoyama S, Watanabe T, Murao K et al (1985) Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci U S A 82:4905–4909PubMedCentralPubMed Yokoyama S, Watanabe T, Murao K et al (1985) Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci U S A 82:4905–4909PubMedCentralPubMed
go back to reference Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407PubMedCentralPubMed Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407PubMedCentralPubMed
go back to reference Zhu HY, Wang SW, Liu L, et al (2009) A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet 17:172–178 Zhu HY, Wang SW, Liu L, et al (2009) A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet 17:172–178
go back to reference Zlotkin SH, Anderson GH (1982) Sulfur balances in intravenously fed infants: effects of cysteine supplementation. Am J Clin Nutr 36:862–867PubMed Zlotkin SH, Anderson GH (1982) Sulfur balances in intravenously fed infants: effects of cysteine supplementation. Am J Clin Nutr 36:862–867PubMed
go back to reference Zlotkin SH, Cherian MG (1988) Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 24:326–329PubMed Zlotkin SH, Cherian MG (1988) Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 24:326–329PubMed
go back to reference Zschocke J (2012) HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis 35:81–89PubMed Zschocke J (2012) HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis 35:81–89PubMed
go back to reference Zschocke J, Ruiter JP, Brand J et al (2000) Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 48:852–855PubMed Zschocke J, Ruiter JP, Brand J et al (2000) Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 48:852–855PubMed
Metadata
Title
Mitochondrial transcript maturation and its disorders
Authors
Lindsey Van Haute
Sarah F. Pearce
Christopher A. Powell
Aaron R. D’Souza
Thomas J. Nicholls
Michal Minczuk
Publication date
01-07-2015
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 4/2015
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-015-9859-z

Other articles of this Issue 4/2015

Journal of Inherited Metabolic Disease 4/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine