Skip to main content
Top
Published in: Translational Neurodegeneration 1/2012

Open Access 01-12-2012 | Review

Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease

Authors: Philip WL Ho, Jessica WM Ho, Hui-Fang Liu, Danny HF So, Zero HM Tse, Koon-Ho Chan, David B Ramsden, Shu-Leong Ho

Published in: Translational Neurodegeneration | Issue 1/2012

Login to get access

Abstract

This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schapira AH, Jenner P: Etiology and pathogenesis of Parkinson's disease. Mov Disord 2011, 26: 1049-1055.PubMedCrossRef Schapira AH, Jenner P: Etiology and pathogenesis of Parkinson's disease. Mov Disord 2011, 26: 1049-1055.PubMedCrossRef
2.
go back to reference Schapira AH: Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 2008, 7: 97-109.PubMedCrossRef Schapira AH: Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 2008, 7: 97-109.PubMedCrossRef
3.
go back to reference Bueler H: Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009, 218: 235-246.PubMedCrossRef Bueler H: Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol 2009, 218: 235-246.PubMedCrossRef
4.
go back to reference Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208: 1-25.PubMedCentralPubMedCrossRef Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208: 1-25.PubMedCentralPubMedCrossRef
5.
go back to reference Parker WD Jr, Boyson SJ, Parks JK: Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 1989, 26: 719-723.PubMedCrossRef Parker WD Jr, Boyson SJ, Parks JK: Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol 1989, 26: 719-723.PubMedCrossRef
6.
go back to reference Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219: 979-980.PubMedCrossRef Langston JW, Ballard P, Tetrud JW, Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219: 979-980.PubMedCrossRef
7.
go back to reference Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000, 3: 1301-1306.PubMedCrossRef Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000, 3: 1301-1306.PubMedCrossRef
8.
go back to reference Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr: Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 1996, 40: 663-671.PubMedCrossRef Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr: Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 1996, 40: 663-671.PubMedCrossRef
9.
go back to reference Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr: Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines. Exp Neurol 2000, 162: 37-50.PubMedCrossRef Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr: Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines. Exp Neurol 2000, 162: 37-50.PubMedCrossRef
10.
go back to reference Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, et al.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429: 417-423.PubMedCrossRef Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, et al.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429: 417-423.PubMedCrossRef
11.
go back to reference Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD: Glutathione-related enzymes in brain in Parkinson's disease. Ann Neurol 1994, 36: 356-361.PubMedCrossRef Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD: Glutathione-related enzymes in brain in Parkinson's disease. Ann Neurol 1994, 36: 356-361.PubMedCrossRef
12.
go back to reference Owen AD, Schapira AH, Jenner P, Marsden CD: Oxidative stress and Parkinson's disease. Ann N Y Acad Sci 1996, 786: 217-223.PubMedCrossRef Owen AD, Schapira AH, Jenner P, Marsden CD: Oxidative stress and Parkinson's disease. Ann N Y Acad Sci 1996, 786: 217-223.PubMedCrossRef
13.
go back to reference Karp G: Bioenergetics, Enzymes, and Metabolism. In Cell and molecular biology: concepts and experiments. 5th edition. Chichester: John Wiley & Sons; 2008:85-119. Karp G: Bioenergetics, Enzymes, and Metabolism. In Cell and molecular biology: concepts and experiments. 5th edition. Chichester: John Wiley & Sons; 2008:85-119.
14.
go back to reference Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191: 144-148.PubMedCrossRef Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191: 144-148.PubMedCrossRef
15.
go back to reference Hatefi Y, Hanstein WG, Galante Y, Stiggall DL: Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Fed Proc 1975, 34: 1699-1706.PubMed Hatefi Y, Hanstein WG, Galante Y, Stiggall DL: Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Fed Proc 1975, 34: 1699-1706.PubMed
16.
go back to reference Ricquier D, Bouillaud F: The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000, 345 Pt 2: 161-179.PubMedCrossRef Ricquier D, Bouillaud F: The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000, 345 Pt 2: 161-179.PubMedCrossRef
17.
go back to reference Porter RK: Mitochondrial proton leak: a role for uncoupling proteins 2 and 3? Biochim Biophys Acta 2001, 1504: 120-127.PubMedCrossRef Porter RK: Mitochondrial proton leak: a role for uncoupling proteins 2 and 3? Biochim Biophys Acta 2001, 1504: 120-127.PubMedCrossRef
18.
go back to reference Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J: Uncoupling proteins: a role in protection against reactive oxygen species--or not? Biochim Biophys Acta 2006, 1757: 449-458.PubMedCrossRef Cannon B, Shabalina IG, Kramarova TV, Petrovic N, Nedergaard J: Uncoupling proteins: a role in protection against reactive oxygen species--or not? Biochim Biophys Acta 2006, 1757: 449-458.PubMedCrossRef
19.
go back to reference Skulachev VP: Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998, 1363: 100-124.PubMedCrossRef Skulachev VP: Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998, 1363: 100-124.PubMedCrossRef
20.
go back to reference Echtay KS, Brand MD: 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep 2007, 12: 26-29.PubMedCrossRef Echtay KS, Brand MD: 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep 2007, 12: 26-29.PubMedCrossRef
21.
go back to reference Nicholls DG, Bernson VS, Heaton GM: The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia Suppl 1978, 32: 89-93.PubMedCrossRef Nicholls DG, Bernson VS, Heaton GM: The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia Suppl 1978, 32: 89-93.PubMedCrossRef
22.
go back to reference Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD: A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 2001, 356: 779-789.PubMedCentralPubMedCrossRef Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD: A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 2001, 356: 779-789.PubMedCentralPubMedCrossRef
23.
go back to reference Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH: Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 1997, 15: 269-272.PubMedCrossRef Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH: Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 1997, 15: 269-272.PubMedCrossRef
24.
go back to reference Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP: Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 1997, 408: 39-42.PubMedCrossRef Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP: Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 1997, 408: 39-42.PubMedCrossRef
25.
go back to reference Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G: UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 1999, 443: 326-330.PubMedCrossRef Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G: UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 1999, 443: 326-330.PubMedCrossRef
26.
go back to reference Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q, Neverova M, Gregoire F, Easlick J, Raimbault S, Levi-Meyrueis C, et al.: BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem 1998, 273: 34611-34615.PubMedCrossRef Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q, Neverova M, Gregoire F, Easlick J, Raimbault S, Levi-Meyrueis C, et al.: BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem 1998, 273: 34611-34615.PubMedCrossRef
27.
go back to reference Kim-Han JS, Reichert SA, Quick KL, Dugan LL: BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J Neurochem 2001, 79: 658-668.PubMedCrossRef Kim-Han JS, Reichert SA, Quick KL, Dugan LL: BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J Neurochem 2001, 79: 658-668.PubMedCrossRef
28.
go back to reference Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, Pan G: Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. Faseb J 2000, 14: 1611-1618.PubMedCrossRef Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, Pan G: Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. Faseb J 2000, 14: 1611-1618.PubMedCrossRef
29.
go back to reference Alan L, Smolkova K, Kronusova E, Santorova J, Jezek P: Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 2009, 41: 71-78.PubMedCrossRef Alan L, Smolkova K, Kronusova E, Santorova J, Jezek P: Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 2009, 41: 71-78.PubMedCrossRef
30.
go back to reference Miroux B, Frossard V, Raimbault S, Ricquier D, Bouillaud F: The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J 1993, 12: 3739-3745.PubMedCentralPubMed Miroux B, Frossard V, Raimbault S, Ricquier D, Bouillaud F: The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J 1993, 12: 3739-3745.PubMedCentralPubMed
31.
32.
go back to reference Ho PW, Chan DY, Kwok KH, Chu AC, Ho JW, Kung MH, Ramsden DB, Ho SL: Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. J Neurosci Res 2005, 81: 261-268.PubMedCrossRef Ho PW, Chan DY, Kwok KH, Chu AC, Ho JW, Kung MH, Ramsden DB, Ho SL: Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. J Neurosci Res 2005, 81: 261-268.PubMedCrossRef
33.
go back to reference Nakase T, Yoshida Y, Nagata K: Amplified expression of uncoupling proteins in human brain ischemic lesions. Neuropathology 2007, 27: 442-447.PubMedCrossRef Nakase T, Yoshida Y, Nagata K: Amplified expression of uncoupling proteins in human brain ischemic lesions. Neuropathology 2007, 27: 442-447.PubMedCrossRef
34.
go back to reference Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y: Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 2011, 1372: 133-144.PubMedCrossRef Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y: Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 2011, 1372: 133-144.PubMedCrossRef
35.
go back to reference Santandreu FM, Valle A, Fernandez de Mattos S, Roca P, Oliver J: Hydrogen peroxide regulates the mitochondrial content of uncoupling protein 5 in colon cancer cells. Cell Physiol Biochem 2009, 24: 379-390.PubMedCrossRef Santandreu FM, Valle A, Fernandez de Mattos S, Roca P, Oliver J: Hydrogen peroxide regulates the mitochondrial content of uncoupling protein 5 in colon cancer cells. Cell Physiol Biochem 2009, 24: 379-390.PubMedCrossRef
36.
go back to reference Chu AC, Ho PW, Kwok KH, Ho JW, Chan KH, Liu HF, Kung MH, Ramsden DB, Ho SL: Mitochondrial UCP4 attenuates MPP+ - and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Free Radic Biol Med 2009, 46: 810-820.PubMedCrossRef Chu AC, Ho PW, Kwok KH, Ho JW, Chan KH, Liu HF, Kung MH, Ramsden DB, Ho SL: Mitochondrial UCP4 attenuates MPP+ - and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Free Radic Biol Med 2009, 46: 810-820.PubMedCrossRef
37.
go back to reference Kwok KH, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL: Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 2010, 49: 1023-1035.PubMedCrossRef Kwok KH, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL: Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 2010, 49: 1023-1035.PubMedCrossRef
38.
go back to reference Keller PA, Lehr L, Giacobino JP, Charnay Y, Assimacopoulos-Jeannet F, Giovannini N: Cloning, ontogenesis, and localization of an atypical uncoupling protein 4 in Xenopus laevis. Physiol Genomics 2005, 22: 339-345.PubMedCrossRef Keller PA, Lehr L, Giacobino JP, Charnay Y, Assimacopoulos-Jeannet F, Giovannini N: Cloning, ontogenesis, and localization of an atypical uncoupling protein 4 in Xenopus laevis. Physiol Genomics 2005, 22: 339-345.PubMedCrossRef
39.
go back to reference Fuxe K, Rivera A, Jacobsen KX, Hoistad M, Leo G, Horvath TL, Staines W, De la Calle A, Agnati LF: Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm 2005, 112: 65-76.PubMedCrossRef Fuxe K, Rivera A, Jacobsen KX, Hoistad M, Leo G, Horvath TL, Staines W, De la Calle A, Agnati LF: Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm 2005, 112: 65-76.PubMedCrossRef
40.
go back to reference Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S: Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 1999, 19: 10417-10427.PubMed Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S: Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 1999, 19: 10417-10427.PubMed
41.
go back to reference Lengacher S, Magistretti PJ, Pellerin L: Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. J Cereb Blood Flow Metab 2004, 24: 780-788.PubMedCrossRef Lengacher S, Magistretti PJ, Pellerin L: Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. J Cereb Blood Flow Metab 2004, 24: 780-788.PubMedCrossRef
42.
go back to reference Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL: Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 2005, 25: 184-191.PubMedCrossRef Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL: Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 2005, 25: 184-191.PubMedCrossRef
43.
go back to reference Jaburek M, Miyamoto S, Di Mascio P, Garlid KD, Jezek P: Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. J Biol Chem 2004, 279: 53097-53102.PubMedCrossRef Jaburek M, Miyamoto S, Di Mascio P, Garlid KD, Jezek P: Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. J Biol Chem 2004, 279: 53097-53102.PubMedCrossRef
44.
go back to reference Echtay KS, Pakay JL, Esteves TC, Brand MD: Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage. Biofactors 2005, 24: 119-130.PubMedCrossRef Echtay KS, Pakay JL, Esteves TC, Brand MD: Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage. Biofactors 2005, 24: 119-130.PubMedCrossRef
45.
go back to reference Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL: Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: Effects on MPP+-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity. J Neurosci Res 2006, 84: 1358-1366.PubMedCrossRef Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL: Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: Effects on MPP+-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity. J Neurosci Res 2006, 84: 1358-1366.PubMedCrossRef
46.
go back to reference Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 2009, 11: 747-752.PubMedCrossRef Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 2009, 11: 747-752.PubMedCrossRef
47.
go back to reference Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD: Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990, 54: 823-827.PubMedCrossRef Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD: Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990, 54: 823-827.PubMedCrossRef
48.
go back to reference Waldeck-Weiermair M, Jean-Quartier C, Rost R, Khan MJ, Vishnu N, Bondarenko AI, Imamura H, Malli R, Graier WF: Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways. J Biol Chem 2011, 286: 28444-28455.PubMedCentralPubMedCrossRef Waldeck-Weiermair M, Jean-Quartier C, Rost R, Khan MJ, Vishnu N, Bondarenko AI, Imamura H, Malli R, Graier WF: Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways. J Biol Chem 2011, 286: 28444-28455.PubMedCentralPubMedCrossRef
49.
go back to reference Ho PW, Liu HF, Ho JW, Zhang WY, Chu AC, Kwok KH, Ge X, Chan KH, Ramsden DB, Ho SL: Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells. Neurotox Res 2010, 17: 332-343.PubMedCentralPubMedCrossRef Ho PW, Liu HF, Ho JW, Zhang WY, Chu AC, Kwok KH, Ge X, Chan KH, Ramsden DB, Ho SL: Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells. Neurotox Res 2010, 17: 332-343.PubMedCentralPubMedCrossRef
50.
go back to reference Shang Y, Liu Y, Du L, Wang Y, Cheng X, Xiao W, Wang X, Jin H, Yang X, Liu S, Chen Q: Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Hepatology 2009, 50: 1204-1216.PubMedCrossRef Shang Y, Liu Y, Du L, Wang Y, Cheng X, Xiao W, Wang X, Jin H, Yang X, Liu S, Chen Q: Targeted expression of uncoupling protein 2 to mouse liver increases the susceptibility to lipopolysaccharide/galactosamine-induced acute liver injury. Hepatology 2009, 50: 1204-1216.PubMedCrossRef
51.
go back to reference Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL: Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 2003, 144: 5014-5021.PubMedCrossRef Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL: Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 2003, 144: 5014-5021.PubMedCrossRef
52.
go back to reference Pfeiffer M, Kayser EB, Yang X, Abramson E, Kenaston MA, Lago CU, Lo HH, Sedensky MM, Lunceford A, Clarke CF, et al.: Caenorhabditis elegans UCP4 controls complex II-mediated oxidative phosphorylation through succinate transport. J Biol Chem 2011. Pfeiffer M, Kayser EB, Yang X, Abramson E, Kenaston MA, Lago CU, Lo HH, Sedensky MM, Lunceford A, Clarke CF, et al.: Caenorhabditis elegans UCP4 controls complex II-mediated oxidative phosphorylation through succinate transport. J Biol Chem 2011.
53.
go back to reference Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP: Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 2006, 8: 389-414.PubMedCrossRef Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP: Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 2006, 8: 389-414.PubMedCrossRef
54.
go back to reference Hanak P, Jezek P: Mitochondrial uncoupling proteins and phylogenesis--UCP4 as the ancestral uncoupling protein. FEBS Lett 2001, 495: 137-141.PubMedCrossRef Hanak P, Jezek P: Mitochondrial uncoupling proteins and phylogenesis--UCP4 as the ancestral uncoupling protein. FEBS Lett 2001, 495: 137-141.PubMedCrossRef
55.
go back to reference Ivanova MV, Hoang T, McSorley FR, Krnac G, Smith MD, Jelokhani-Niaraki M: A comparative study on conformation and ligand binding of the neuronal uncoupling proteins. Biochemistry 2010, 49: 512-521.PubMedCrossRef Ivanova MV, Hoang T, McSorley FR, Krnac G, Smith MD, Jelokhani-Niaraki M: A comparative study on conformation and ligand binding of the neuronal uncoupling proteins. Biochemistry 2010, 49: 512-521.PubMedCrossRef
56.
go back to reference Surmeier DJ, Guzman JN, Sanchez-Padilla J: Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 2010, 47: 175-182.PubMedCentralPubMedCrossRef Surmeier DJ, Guzman JN, Sanchez-Padilla J: Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 2010, 47: 175-182.PubMedCentralPubMedCrossRef
57.
go back to reference Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF: Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 2007, 9: 445-452.PubMedCentralPubMedCrossRef Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF: Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nat Cell Biol 2007, 9: 445-452.PubMedCentralPubMedCrossRef
58.
go back to reference Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP: Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 2006, 281: 37391-37403.PubMedCrossRef Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP: Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 2006, 281: 37391-37403.PubMedCrossRef
59.
go back to reference Wu Z, Zhang J, Zhao B: Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxid Redox Signal 2009. Wu Z, Zhang J, Zhao B: Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxid Redox Signal 2009.
60.
go back to reference Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ: Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468: 696-700.PubMedCentralPubMedCrossRef Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ: Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010, 468: 696-700.PubMedCentralPubMedCrossRef
62.
go back to reference Wanagat J, Allison DB, Weindruch R: Caloric intake and aging: mechanisms in rodents and a study in nonhuman primates. Toxicol Sci 1999, 52: 35-40.PubMedCrossRef Wanagat J, Allison DB, Weindruch R: Caloric intake and aging: mechanisms in rodents and a study in nonhuman primates. Toxicol Sci 1999, 52: 35-40.PubMedCrossRef
63.
go back to reference Mattison JA, Lane MA, Roth GS, Ingram DK: Calorie restriction in rhesus monkeys. Exp Gerontol 2003, 38: 35-46.PubMedCrossRef Mattison JA, Lane MA, Roth GS, Ingram DK: Calorie restriction in rhesus monkeys. Exp Gerontol 2003, 38: 35-46.PubMedCrossRef
64.
go back to reference Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, et al.: Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci USA 2004, 101: 18171-18176.PubMedCentralPubMedCrossRef Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, et al.: Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci USA 2004, 101: 18171-18176.PubMedCentralPubMedCrossRef
65.
go back to reference Casanueva FF, Dieguez C: Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol 1999, 20: 317-363.PubMedCrossRef Casanueva FF, Dieguez C: Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol 1999, 20: 317-363.PubMedCrossRef
67.
go back to reference Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS: Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382: 250-252.PubMedCrossRef Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS: Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382: 250-252.PubMedCrossRef
68.
go back to reference Takeda S, Elefteriou F, Karsenty G: Common endocrine control of body weight, reproduction, and bone mass. Annu Rev Nutr 2003, 23: 403-411.PubMedCrossRef Takeda S, Elefteriou F, Karsenty G: Common endocrine control of body weight, reproduction, and bone mass. Annu Rev Nutr 2003, 23: 403-411.PubMedCrossRef
69.
go back to reference Cohen MM Jr: Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet A 2006, 140: 515-524.PubMedCrossRef Cohen MM Jr: Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am J Med Genet A 2006, 140: 515-524.PubMedCrossRef
70.
71.
go back to reference Bates SH, Kulkarni RN, Seifert M, Myers MG Jr: Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 2005, 1: 169-178.PubMedCrossRef Bates SH, Kulkarni RN, Seifert M, Myers MG Jr: Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 2005, 1: 169-178.PubMedCrossRef
72.
go back to reference Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV: Localization of leptin receptor in the human brain. Neuroendocrinology 1997, 66: 145-150.PubMedCrossRef Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV: Localization of leptin receptor in the human brain. Neuroendocrinology 1997, 66: 145-150.PubMedCrossRef
73.
go back to reference Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA: Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology 2004, 145: 4103-4112.PubMedCrossRef Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA: Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology 2004, 145: 4103-4112.PubMedCrossRef
74.
go back to reference Dzamko NL, Steinberg GR: AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol (Oxf) 2009, 196: 115-127.CrossRef Dzamko NL, Steinberg GR: AMPK-dependent hormonal regulation of whole-body energy metabolism. Acta Physiol (Oxf) 2009, 196: 115-127.CrossRef
75.
go back to reference Tu N, Chen H, Winnikes U, Reinert I, Marmann G, Pirke KM, Lentes KU: Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene. Biochem Biophys Res Commun 1999, 265: 326-334.PubMedCrossRef Tu N, Chen H, Winnikes U, Reinert I, Marmann G, Pirke KM, Lentes KU: Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene. Biochem Biophys Res Commun 1999, 265: 326-334.PubMedCrossRef
76.
go back to reference Yamada S, Isojima Y, Yamatodani A, Nagai K: Uncoupling protein 2 influences dopamine secretion in PC12h cells. J Neurochem 2003, 87: 461-469.PubMedCrossRef Yamada S, Isojima Y, Yamatodani A, Nagai K: Uncoupling protein 2 influences dopamine secretion in PC12h cells. J Neurochem 2003, 87: 461-469.PubMedCrossRef
77.
go back to reference Esler M, Vaz M, Collier G, Nestel P, Jennings G, Kaye D, Seals D, Lambert G: Leptin in human plasma is derived in part from the brain, and cleared by the kidneys. Lancet 1998, 351: 879.PubMedCrossRef Esler M, Vaz M, Collier G, Nestel P, Jennings G, Kaye D, Seals D, Lambert G: Leptin in human plasma is derived in part from the brain, and cleared by the kidneys. Lancet 1998, 351: 879.PubMedCrossRef
79.
go back to reference Melia HP, Andrews JF, McBennett SM, Porter RK: Effects of acute leptin administration on the differences in proton leak rate in liver mitochondria from ob/ob mice compared to lean controls. FEBS Lett 1999, 458: 261-264.PubMedCrossRef Melia HP, Andrews JF, McBennett SM, Porter RK: Effects of acute leptin administration on the differences in proton leak rate in liver mitochondria from ob/ob mice compared to lean controls. FEBS Lett 1999, 458: 261-264.PubMedCrossRef
80.
go back to reference Meffert MK, Baltimore D: Physiological functions for brain NF-kappaB. Trends Neurosci 2005, 28: 37-43.PubMedCrossRef Meffert MK, Baltimore D: Physiological functions for brain NF-kappaB. Trends Neurosci 2005, 28: 37-43.PubMedCrossRef
82.
83.
go back to reference Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005, 5: 749-759.PubMedCrossRef Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005, 5: 749-759.PubMedCrossRef
84.
go back to reference Kaltschmidt B, Heinrich M, Kaltschmidt C: Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. Neuromolecular Med 2002, 2: 299-309.PubMedCrossRef Kaltschmidt B, Heinrich M, Kaltschmidt C: Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. Neuromolecular Med 2002, 2: 299-309.PubMedCrossRef
85.
go back to reference Lezoualc'h F, Behl C: Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry 1998, 3: 15-20.PubMedCrossRef Lezoualc'h F, Behl C: Transcription factor NF-kappaB: friend or foe of neurons? Mol Psychiatry 1998, 3: 15-20.PubMedCrossRef
86.
go back to reference Youdim MB, Grunblatt E, Mandel S: The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann N Y Acad Sci 1999, 890: 7-25.PubMedCrossRef Youdim MB, Grunblatt E, Mandel S: The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann N Y Acad Sci 1999, 890: 7-25.PubMedCrossRef
87.
go back to reference Sarnico I, Boroni F, Benarese M, Sigala S, Lanzillotta A, Battistin L, Spano P, Pizzi M: Activation of NF-kappaB p65/c-Rel dimer is associated with neuroprotection elicited by mGlu5 receptor agonists against MPP(+) toxicity in SK-N-SH cells. J Neural Transm 2008, 115: 669-676.PubMedCrossRef Sarnico I, Boroni F, Benarese M, Sigala S, Lanzillotta A, Battistin L, Spano P, Pizzi M: Activation of NF-kappaB p65/c-Rel dimer is associated with neuroprotection elicited by mGlu5 receptor agonists against MPP(+) toxicity in SK-N-SH cells. J Neural Transm 2008, 115: 669-676.PubMedCrossRef
88.
go back to reference Aoki E, Yano R, Yokoyama H, Kato H, Araki T: Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 2009, 86: 57-64.PubMedCrossRef Aoki E, Yano R, Yokoyama H, Kato H, Araki T: Role of nuclear transcription factor kappa B (NF-kappaB) for MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine)-induced apoptosis in nigral neurons of mice. Exp Mol Pathol 2009, 86: 57-64.PubMedCrossRef
89.
go back to reference Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 2007, 104: 18754-18759.PubMedCentralPubMedCrossRef Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci USA 2007, 104: 18754-18759.PubMedCentralPubMedCrossRef
90.
go back to reference Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M: NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 2009, 108: 475-485.PubMedCrossRef Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M: NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 2009, 108: 475-485.PubMedCrossRef
91.
go back to reference Pizzi M, Sarnico I, Boroni F, Benarese M, Steimberg N, Mazzoleni G, Dietz GP, Bahr M, Liou HC, Spano PF: NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ 2005, 12: 761-772.PubMedCrossRef Pizzi M, Sarnico I, Boroni F, Benarese M, Steimberg N, Mazzoleni G, Dietz GP, Bahr M, Liou HC, Spano PF: NF-kappaB factor c-Rel mediates neuroprotection elicited by mGlu5 receptor agonists against amyloid beta-peptide toxicity. Cell Death Differ 2005, 12: 761-772.PubMedCrossRef
92.
go back to reference Ho JW, Ho PW, Zhang WY, Liu HF, Kwok KH, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL: Transcriptional regulation of UCP4 by NF-kappaB and its role in mediating protection against MPP+ toxicity. Free Radic Biol Med 2010, 49: 192-204.PubMedCrossRef Ho JW, Ho PW, Zhang WY, Liu HF, Kwok KH, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL: Transcriptional regulation of UCP4 by NF-kappaB and its role in mediating protection against MPP+ toxicity. Free Radic Biol Med 2010, 49: 192-204.PubMedCrossRef
93.
go back to reference Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, et al.: A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004, 6: 97-105.PubMedCrossRef Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, et al.: A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004, 6: 97-105.PubMedCrossRef
94.
go back to reference Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B: Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 2006, 7: 64.PubMedCentralPubMedCrossRef Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B: Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 2006, 7: 64.PubMedCentralPubMedCrossRef
95.
go back to reference Pawade T, Ho PW, Kwok KH, Chu AC, Ho SL, Ramsden DB: Uncoupling proteins: targets of endocrine disruptors? Mol Cell Endocrinol 2005, 244: 79-86.PubMedCrossRef Pawade T, Ho PW, Kwok KH, Chu AC, Ho SL, Ramsden DB: Uncoupling proteins: targets of endocrine disruptors? Mol Cell Endocrinol 2005, 244: 79-86.PubMedCrossRef
96.
go back to reference Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, et al.: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006, 4: e31.PubMedCentralPubMedCrossRef Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, et al.: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006, 4: e31.PubMedCentralPubMedCrossRef
98.
go back to reference Liu Y, Chen L, Xu X, Vicaut E, Sercombe R: Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 2009, 9: 17.PubMedCentralPubMedCrossRef Liu Y, Chen L, Xu X, Vicaut E, Sercombe R: Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiol 2009, 9: 17.PubMedCentralPubMedCrossRef
99.
go back to reference Ridder DA, Schwaninger M: NF-kappaB signaling in cerebral ischemia. Neuroscience 2009, 158: 995-1006.PubMedCrossRef Ridder DA, Schwaninger M: NF-kappaB signaling in cerebral ischemia. Neuroscience 2009, 158: 995-1006.PubMedCrossRef
100.
go back to reference Yang L, Tao LY, Chen XP: Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 2007, 23: 307-313.PubMedCrossRef Yang L, Tao LY, Chen XP: Roles of NF-kappaB in central nervous system damage and repair. Neurosci Bull 2007, 23: 307-313.PubMedCrossRef
101.
go back to reference Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C, Battistin L, Spano P, Pizzi M: NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol 2009, 85: 351-362.PubMedCrossRef Sarnico I, Lanzillotta A, Benarese M, Alghisi M, Baiguera C, Battistin L, Spano P, Pizzi M: NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol 2009, 85: 351-362.PubMedCrossRef
102.
go back to reference Memet S: NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006, 72: 1180-1195.PubMedCrossRef Memet S: NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006, 72: 1180-1195.PubMedCrossRef
103.
go back to reference Mattson MP, Meffert MK: Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 2006, 13: 852-860.PubMedCrossRef Mattson MP, Meffert MK: Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 2006, 13: 852-860.PubMedCrossRef
104.
go back to reference Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB: Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 2004, 88: 494-501.PubMedCrossRef Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB: Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 2004, 88: 494-501.PubMedCrossRef
105.
go back to reference Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA 1997, 94: 7531-7536.PubMedCentralPubMedCrossRef Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA 1997, 94: 7531-7536.PubMedCentralPubMedCrossRef
106.
go back to reference Soos J, Engelhardt JI, Siklos L, Havas L, Majtenyi K: The expression of PARP, NF-kappa B and parvalbumin is increased in Parkinson disease. Neuroreport 2004, 15: 1715-1718.PubMedCrossRef Soos J, Engelhardt JI, Siklos L, Havas L, Majtenyi K: The expression of PARP, NF-kappa B and parvalbumin is increased in Parkinson disease. Neuroreport 2004, 15: 1715-1718.PubMedCrossRef
107.
go back to reference Tarabin V, Schwaninger M: The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn Schmiedebergs Arch Pharmacol 2004, 369: 563-569.PubMedCrossRef Tarabin V, Schwaninger M: The role of NF-kappaB in 6-hydroxydopamine- and TNFalpha-induced apoptosis of PC12 cells. Naunyn Schmiedebergs Arch Pharmacol 2004, 369: 563-569.PubMedCrossRef
108.
go back to reference Szolnoki Z, Kondacs A, Mandi Y, Bodor A, Somogyvari F: A homozygous genetic variant of mitochondrial uncoupling protein 4 exerts protection against the occurrence of multiple sclerosis. Neuromolecular Med 2009, 11: 101-105.PubMedCrossRef Szolnoki Z, Kondacs A, Mandi Y, Bodor A, Somogyvari F: A homozygous genetic variant of mitochondrial uncoupling protein 4 exerts protection against the occurrence of multiple sclerosis. Neuromolecular Med 2009, 11: 101-105.PubMedCrossRef
109.
go back to reference Mouaffak F, Kebir O, Bellon A, Gourevitch R, Tordjman S, Viala A, Millet B, Jaafari N, Olie JP, Krebs MO: Association of an UCP4 (SLC25A27) haplotype with ultra-resistant schizophrenia. Pharmacogenomics 2011, 12: 185-193.PubMedCrossRef Mouaffak F, Kebir O, Bellon A, Gourevitch R, Tordjman S, Viala A, Millet B, Jaafari N, Olie JP, Krebs MO: Association of an UCP4 (SLC25A27) haplotype with ultra-resistant schizophrenia. Pharmacogenomics 2011, 12: 185-193.PubMedCrossRef
110.
go back to reference Yasuno K, Ando S, Misumi S, Makino S, Kulski JK, Muratake T, Kaneko N, Amagane H, Someya T, Inoko H, et al.: Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2007, 144B: 250-253.PubMedCrossRef Yasuno K, Ando S, Misumi S, Makino S, Kulski JK, Muratake T, Kaneko N, Amagane H, Someya T, Inoko H, et al.: Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2007, 144B: 250-253.PubMedCrossRef
111.
go back to reference Szolnoki Z: Common genetic variants of the mitochondrial trafficking system and mitochondrial uncoupling proteins affect the development of two slowly developing demyelinating disorders, leukoaraiosis and multiple sclerosis. Curr Med Chem 2010, 17: 3583-3590.PubMedCrossRef Szolnoki Z: Common genetic variants of the mitochondrial trafficking system and mitochondrial uncoupling proteins affect the development of two slowly developing demyelinating disorders, leukoaraiosis and multiple sclerosis. Curr Med Chem 2010, 17: 3583-3590.PubMedCrossRef
Metadata
Title
Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease
Authors
Philip WL Ho
Jessica WM Ho
Hui-Fang Liu
Danny HF So
Zero HM Tse
Koon-Ho Chan
David B Ramsden
Shu-Leong Ho
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2012
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/2047-9158-1-3

Other articles of this Issue 1/2012

Translational Neurodegeneration 1/2012 Go to the issue