Skip to main content
Top
Published in: Journal of Ovarian Research 1/2018

Open Access 01-12-2018 | Research

Mitochondrial membrane depolarization enhances TRAIL-induced cell death in adult human granulosa tumor cells, KGN, through inhibition of BIRC5

Authors: Julie A. MacDonald, Niharika Kura, Carleigh Sussman, Dori C. Woods

Published in: Journal of Ovarian Research | Issue 1/2018

Login to get access

Abstract

Background

Cellular metabolic changes that accompany malignant transformation have been heralded as hallmark features of cancer. However, metabolic signatures between neoplasms can be unique, allowing for distinctions in malignancy, invasion and chemoresistance between cancer types and subtypes. Mitochondria are central metabolic mediators, as cellular bioenergetics veers from oxidative phosphorylation to glycolysis. Herein, we evaluate the role of mitochondria in maintenance of cellular metabolism, proliferation, and survival in the adult granulosa tumor cell line, KGN, as well as three epithelial ovarian cancer cell lines to determine distinctions in specific features.

Results

Notably, KGN cells were susceptible to TRAIL- and cisplatin-induced death following pretreatment with the metabolic inhibitor FCCP, but not oligomycin A. Collapse of mitochondrial membrane potential was found concomitant with cell death via apoptosis, independent from extrinsic canonical apoptotic routes. Rather, treatment with FCCP resulted in elevated cytochrome c release from mitochondria and decreased responsiveness to BIRC5. Following knockdown of BIRC5, mitochondrial membrane depolarization further sensitized KGN cells to induction of apoptosis via TRAIL.

Conclusions

These results indicate an essential role, distinct from metabolism, for mitochondrial membrane potential in KGN cells to sense and respond to external mediators of apoptotic induction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Truman AM, Johnson AL, Woods DC. Granulosa Cell Tumors. In: Schwab M, editor. Encyclopedia of Cancer. 4th revise. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & co.; 2016. Truman AM, Johnson AL, Woods DC. Granulosa Cell Tumors. In: Schwab M, editor. Encyclopedia of Cancer. 4th revise. Berlin: Springer-Verlag Berlin and Heidelberg GmbH & co.; 2016.
2.
go back to reference Shah S, Köbel M, Senz J, Morin R, Clarke B, Wiegand K, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29.CrossRefPubMed Shah S, Köbel M, Senz J, Morin R, Clarke B, Wiegand K, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29.CrossRefPubMed
3.
go back to reference Leung D, Fuller P, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51–4.CrossRefPubMed Leung D, Fuller P, Chu S. Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int J Biochem Cell Biol. 2016;72:51–4.CrossRefPubMed
4.
go back to reference Jamieson S, Fuller PJ. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr Rev. 2012;33(1):109–44.CrossRefPubMed Jamieson S, Fuller PJ. Molecular pathogenesis of granulosa cell tumors of the ovary. Endocr Rev. 2012;33(1):109–44.CrossRefPubMed
5.
go back to reference Köbel M, Gilks C, Huntsman D. Adult-type granulosa cell tumors and FOXL2 mutation. Cancer Res. 2009;69(24):9160–2.CrossRefPubMed Köbel M, Gilks C, Huntsman D. Adult-type granulosa cell tumors and FOXL2 mutation. Cancer Res. 2009;69(24):9160–2.CrossRefPubMed
6.
7.
go back to reference Colombo N, Parma G, Zanagnolo V, Insinga A. Management of ovarian stromal cell tumors. J Clin Oncol. 2007;25(20):2944–51.CrossRefPubMed Colombo N, Parma G, Zanagnolo V, Insinga A. Management of ovarian stromal cell tumors. J Clin Oncol. 2007;25(20):2944–51.CrossRefPubMed
8.
go back to reference Segal R, DePetrillo AD, Thomas G. Clinical review of adult granulosa cell tumors of the ovary. Gynecol Oncol. 1995;56:338–44.CrossRefPubMed Segal R, DePetrillo AD, Thomas G. Clinical review of adult granulosa cell tumors of the ovary. Gynecol Oncol. 1995;56:338–44.CrossRefPubMed
9.
go back to reference Miller K, McCluggage WG. Prognostic factors in ovarian adult granulosa cell tumour. J Clin Pathol. 2008;61(8):881–4.CrossRefPubMed Miller K, McCluggage WG. Prognostic factors in ovarian adult granulosa cell tumour. J Clin Pathol. 2008;61(8):881–4.CrossRefPubMed
10.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB, Mammalian P, Exhibit C, Metabolism A. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB, Mammalian P, Exhibit C, Metabolism A. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.CrossRefPubMedPubMedCentral
11.
go back to reference Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.CrossRefPubMed Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.CrossRefPubMed
12.
go back to reference Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891.CrossRefPubMed Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891.CrossRefPubMed
13.
go back to reference Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.CrossRefPubMed Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.CrossRefPubMed
14.
go back to reference Schmidt M, Kammerer U, Segerer S, Cramer A, Kohrenhagen N, Dietl J, Voelker H. Glucose metabolism and angiogenesis in granulosa cell tumors of the ovary: activation of Akt, expression of M2PK, TKTL1 and VEGF. Eur J Obstet Gynecol Reprod Biol. 2008;139(1):72–8.CrossRefPubMed Schmidt M, Kammerer U, Segerer S, Cramer A, Kohrenhagen N, Dietl J, Voelker H. Glucose metabolism and angiogenesis in granulosa cell tumors of the ovary: activation of Akt, expression of M2PK, TKTL1 and VEGF. Eur J Obstet Gynecol Reprod Biol. 2008;139(1):72–8.CrossRefPubMed
15.
go back to reference Dier U, Shin DH, Hemachandra LMP, Uusitalo LM, Hempel N. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One. 2014;9(5):e98479.CrossRefPubMedPubMedCentral Dier U, Shin DH, Hemachandra LMP, Uusitalo LM, Hempel N. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One. 2014;9(5):e98479.CrossRefPubMedPubMedCentral
16.
go back to reference Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget. 2015;6(28):25677–95.CrossRefPubMedPubMedCentral Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget. 2015;6(28):25677–95.CrossRefPubMedPubMedCentral
17.
go back to reference Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran AQ, et al. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget. 2017;8(38):63551–61.PubMedCentralPubMed Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran AQ, et al. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget. 2017;8(38):63551–61.PubMedCentralPubMed
18.
go back to reference Woods DC, Liu HK, Nishi Y, Yanase T, Johnson AL. Inhibition of proteasome activity sensitizes human granulosa tumor cells to TRAIL-induced cell death. Cancer Lett. 2008;260(1):20–7.CrossRefPubMed Woods DC, Liu HK, Nishi Y, Yanase T, Johnson AL. Inhibition of proteasome activity sensitizes human granulosa tumor cells to TRAIL-induced cell death. Cancer Lett. 2008;260(1):20–7.CrossRefPubMed
19.
go back to reference Woods DC, Alvarez C, Johnson AL. Cisplatin-mediated sensitivity to TRAIL-induced cell death in human granulosa tumor cells. Gynecol Oncol. 2008;108(3):632–40.CrossRefPubMed Woods DC, Alvarez C, Johnson AL. Cisplatin-mediated sensitivity to TRAIL-induced cell death in human granulosa tumor cells. Gynecol Oncol. 2008;108(3):632–40.CrossRefPubMed
20.
go back to reference Johnson AL, Ratajczak C, Haugen MJ, Liu HK, Woods DC. Tumor necrosis factor-related apoptosis inducing ligand expression and activity in hen granulosa cells. Reproduction. 2007;133(3):609–16.CrossRefPubMed Johnson AL, Ratajczak C, Haugen MJ, Liu HK, Woods DC. Tumor necrosis factor-related apoptosis inducing ligand expression and activity in hen granulosa cells. Reproduction. 2007;133(3):609–16.CrossRefPubMed
21.
go back to reference Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420–30.CrossRefPubMed Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420–30.CrossRefPubMed
22.
go back to reference Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81(4):505–12.CrossRefPubMed Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81(4):505–12.CrossRefPubMed
23.
24.
go back to reference Deveraux Q, Roy N, Stennicke H, Van Arsdale T, Zhou Q, Srinivasula S, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998;17(8):2215–23.CrossRefPubMedPubMedCentral Deveraux Q, Roy N, Stennicke H, Van Arsdale T, Zhou Q, Srinivasula S, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998;17(8):2215–23.CrossRefPubMedPubMedCentral
25.
go back to reference Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006;244(2):164–71.CrossRefPubMed Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006;244(2):164–71.CrossRefPubMed
26.
go back to reference Ausserlechner MJ, Hagenbuchner J. Mitochondrial survivin–an Achilles’ heel in cancer chemoresistance. Mol Cell Oncol. 2016;3(2):e1076589.CrossRefPubMed Ausserlechner MJ, Hagenbuchner J. Mitochondrial survivin–an Achilles’ heel in cancer chemoresistance. Mol Cell Oncol. 2016;3(2):e1076589.CrossRefPubMed
27.
go back to reference Benz R, McLaughlin S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J. 1983;41(3):381–98.CrossRefPubMedPubMedCentral Benz R, McLaughlin S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J. 1983;41(3):381–98.CrossRefPubMedPubMedCentral
28.
go back to reference Lane D, Côté M, Grondin R, Couture M, Piché A. Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3. Mol Cancer Ther. 2006;5(3):509–21.CrossRefPubMed Lane D, Côté M, Grondin R, Couture M, Piché A. Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3. Mol Cancer Ther. 2006;5(3):509–21.CrossRefPubMed
29.
go back to reference O’brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. FEBS J. 2000;267(17):5421–6. O’brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. FEBS J. 2000;267(17):5421–6.
30.
go back to reference Raspagliesi F, Martinelli F, Grijuela B, Guadalupi V. Third-line chemotherapy with tyrosine kinase inhibitor (imatinib mesylate) in recurrent ovarian granulosa cell tumor: case report. J Obstet Gynaecol Res. 2011;37(12):1864–7.CrossRefPubMed Raspagliesi F, Martinelli F, Grijuela B, Guadalupi V. Third-line chemotherapy with tyrosine kinase inhibitor (imatinib mesylate) in recurrent ovarian granulosa cell tumor: case report. J Obstet Gynaecol Res. 2011;37(12):1864–7.CrossRefPubMed
31.
go back to reference Penefsky HS. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci. 1985;82(6):1589–93.CrossRefPubMedPubMedCentral Penefsky HS. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci. 1985;82(6):1589–93.CrossRefPubMedPubMedCentral
32.
go back to reference Miyazawa M, Yasuda M, Fujita M, Hirabayashi K, Hirasawa T, Kajiwara H, Muramatsu T, et al. Granulosa cell tumor with activated mTOR-HIF-1α-VEGF pathway. J Obstet Gynaecol Res. 2010;36(2):448–53.CrossRefPubMed Miyazawa M, Yasuda M, Fujita M, Hirabayashi K, Hirasawa T, Kajiwara H, Muramatsu T, et al. Granulosa cell tumor with activated mTOR-HIF-1α-VEGF pathway. J Obstet Gynaecol Res. 2010;36(2):448–53.CrossRefPubMed
33.
go back to reference Tsoi M, Laguëëlle MN, Boyer A, Paquet M, Nadeau MÈ, Boerboom D. Anti-VEGFA therapy reduces tumor growth and extends survival in a murine model of ovarian granulosa cell tumor. Transl Oncol. 2013;6(3):226–33.CrossRefPubMedPubMedCentral Tsoi M, Laguëëlle MN, Boyer A, Paquet M, Nadeau MÈ, Boerboom D. Anti-VEGFA therapy reduces tumor growth and extends survival in a murine model of ovarian granulosa cell tumor. Transl Oncol. 2013;6(3):226–33.CrossRefPubMedPubMedCentral
34.
go back to reference Nishi Y, Yanase T, Mu YM, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142(1):437–45.CrossRefPubMed Nishi Y, Yanase T, Mu YM, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142(1):437–45.CrossRefPubMed
35.
go back to reference Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.CrossRefPubMed Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.CrossRefPubMed
36.
go back to reference Hernandez L, Kim MK, Lyle LT, Bunch KP, House CD, Ning F, et al. Characterization of ovarian cancer cell lines as in vivo models for preclinical studies. Gynecol Oncol. 2016;142(2):332–40.CrossRefPubMedPubMedCentral Hernandez L, Kim MK, Lyle LT, Bunch KP, House CD, Ning F, et al. Characterization of ovarian cancer cell lines as in vivo models for preclinical studies. Gynecol Oncol. 2016;142(2):332–40.CrossRefPubMedPubMedCentral
37.
go back to reference Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One. 2014;9(9):e103988.CrossRefPubMedPubMedCentral Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One. 2014;9(9):e103988.CrossRefPubMedPubMedCentral
Metadata
Title
Mitochondrial membrane depolarization enhances TRAIL-induced cell death in adult human granulosa tumor cells, KGN, through inhibition of BIRC5
Authors
Julie A. MacDonald
Niharika Kura
Carleigh Sussman
Dori C. Woods
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2018
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0463-3

Other articles of this Issue 1/2018

Journal of Ovarian Research 1/2018 Go to the issue