Skip to main content
Top
Published in: Brain Structure and Function 2/2007

01-09-2007 | Original Article

Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments

Authors: John C. Fiala, Marcia Feinberg, Alan Peters, Helen Barbas

Published in: Brain Structure and Function | Issue 2/2007

Login to get access

Abstract

Recent data show that amyloid precursor protein accumulates inside axons after disruption of fast axonal transport, but how this leads to mature plaques with extracellular amyloid remains unclear. To investigate this issue, primitive plaques in prefrontal cortex of aged rhesus monkeys were reconstructed using serial section electron microscopy. The swollen profiles of dystrophic neurites were found to be diverticula from the main axis of otherwise normal neurites. Microtubules extended from the main neurite axis into the diverticulum to form circular loops or coils, providing a transport pathway for trapping organelles. The quantity and morphology of organelles contained within diverticula suggested a progression of degeneration. Primitive diverticula contained microtubules and normal mitochondria, while larger, presumably older, diverticula contained large numbers of degenerating mitochondria. In advanced stages of degeneration, apparent autophagosomes derived from mitochondria exhibited a loose lamellar to filamentous internal structure. Similar filamentous material and remnants of mitochondria were visible in the extracellular spaces of plaques. This progression of degeneration suggests that extracellular filaments originate inside degenerating mitochondria of neuritic diverticula, which may be a common process in diverse diseases.
Literature
go back to reference Armstrong RA (1998) Beta-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238PubMedCrossRef Armstrong RA (1998) Beta-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 9:227–238PubMedCrossRef
go back to reference Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116PubMedCrossRef Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116PubMedCrossRef
go back to reference Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498PubMedCrossRef Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498PubMedCrossRef
go back to reference Benes FM, Farol PA, Majocha RE, Marotta CA, Bird ED (1991) Evidence for axonal loss in regions occupied by senile plaques in Alzheimer cortex. Neuroscience 42:651–660PubMedCrossRef Benes FM, Farol PA, Majocha RE, Marotta CA, Bird ED (1991) Evidence for axonal loss in regions occupied by senile plaques in Alzheimer cortex. Neuroscience 42:651–660PubMedCrossRef
go back to reference Bi X, Zhou J, Lynch G (1999) Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer’s disease. Exp Neurol 158:312–327PubMedCrossRef Bi X, Zhou J, Lynch G (1999) Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer’s disease. Exp Neurol 158:312–327PubMedCrossRef
go back to reference Boutajangout A, Authlet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion J-P (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60PubMedCrossRef Boutajangout A, Authlet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion J-P (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60PubMedCrossRef
go back to reference Braak H (1979) Spindle-shaped appendages of IIIab-pyramids filled with lipofuscin: a striking pathological change of the senescent human isocortex. Acta Neuropathol (Berl) 46:197–202CrossRef Braak H (1979) Spindle-shaped appendages of IIIab-pyramids filled with lipofuscin: a striking pathological change of the senescent human isocortex. Acta Neuropathol (Berl) 46:197–202CrossRef
go back to reference Brunk UT, Terman A (2002) The mitochondrial–lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002PubMedCrossRef Brunk UT, Terman A (2002) The mitochondrial–lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002PubMedCrossRef
go back to reference Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888PubMedCrossRef Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888PubMedCrossRef
go back to reference Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493PubMedCrossRef Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493PubMedCrossRef
go back to reference Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041PubMed Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041PubMed
go back to reference Chan KY, Bunt AH (1978) An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol 7:137–143PubMedCrossRef Chan KY, Bunt AH (1978) An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol 7:137–143PubMedCrossRef
go back to reference Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRef Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRef
go back to reference Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22:2215–2224PubMed Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22:2215–2224PubMed
go back to reference Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19:8894–8908PubMed Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19:8894–8908PubMed
go back to reference Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068PubMedCrossRef Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068PubMedCrossRef
go back to reference Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol (Berl) 93:379–390CrossRef Elleder M, Sokolova J, Hrebicek M (1997) Follow-up study of subunit c of mitochondrial ATP synthase (SCMAS) in Batten disease and in unrelated lysosomal disorders. Acta Neuropathol (Berl) 93:379–390CrossRef
go back to reference Fiala JC, Harris KM (2001a) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8(1):1–16PubMed Fiala JC, Harris KM (2001a) Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8(1):1–16PubMed
go back to reference Fiala JC, Harris KM (2001b) Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsc 202(3):468–472PubMedCrossRef Fiala JC, Harris KM (2001b) Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J Microsc 202(3):468–472PubMedCrossRef
go back to reference Fiala JC, Harris KM (2002) Computer-based alignment and reconstruction of serial sections. Microsc Anal USA Edition 52:5–7 Fiala JC, Harris KM (2002) Computer-based alignment and reconstruction of serial sections. Microsc Anal USA Edition 52:5–7
go back to reference Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103PubMedCrossRef Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103PubMedCrossRef
go back to reference Frezza C, Cipolat S, de Brito OM, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189PubMedCrossRef Frezza C, Cipolat S, de Brito OM, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189PubMedCrossRef
go back to reference Ghadially FN (1997) Ultrastructural pathology of the cell and matrix. Butterworth-Heinemann, Boston Ghadially FN (1997) Ultrastructural pathology of the cell and matrix. Butterworth-Heinemann, Boston
go back to reference Ginsberg SD, Crino PB, Hemby SE, Weingarten JA, Lee VM, Eberwine JH, Trojanowski JQ (1999) Predominance of neuronal mRNAs in individual Alzheimer’s disease senile plaques. Ann Neurol 45:174–181PubMedCrossRef Ginsberg SD, Crino PB, Hemby SE, Weingarten JA, Lee VM, Eberwine JH, Trojanowski JQ (1999) Predominance of neuronal mRNAs in individual Alzheimer’s disease senile plaques. Ann Neurol 45:174–181PubMedCrossRef
go back to reference Gordon-Weeks PR, Burgoyne RD, Gray EG (1982) Presynaptic microtubules: organisation and assembly/disassembly. Neuroscience 7:739–749PubMedCrossRef Gordon-Weeks PR, Burgoyne RD, Gray EG (1982) Presynaptic microtubules: organisation and assembly/disassembly. Neuroscience 7:739–749PubMedCrossRef
go back to reference Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1006PubMedCrossRef Götz J, Ittner LM, Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer’s disease? J Neurochem 98:993–1006PubMedCrossRef
go back to reference Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244PubMedCrossRef Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244PubMedCrossRef
go back to reference Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660PubMedCrossRef Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B, Cowburn RF, Thyberg J, Ankarcrona M (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279:51654–51660PubMedCrossRef
go back to reference Hariri M, Millane G, Guimond MP, Guay G, Dennis JW, Nabi IR (2000) Biogenesis of multilamellar bodies via autophagy. Mol Biol Cell 11:255–268PubMed Hariri M, Millane G, Guimond MP, Guay G, Dennis JW, Nabi IR (2000) Biogenesis of multilamellar bodies via autophagy. Mol Biol Cell 11:255–268PubMed
go back to reference Heilbroner PL, Kemper TL (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys. Acta Neuropathol 81:60–65PubMedCrossRef Heilbroner PL, Kemper TL (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys. Acta Neuropathol 81:60–65PubMedCrossRef
go back to reference Helen P, Zeitlin R, Hervonen A (1980) Mitochondrial accumulations in nerve fibers of human sympathetic ganglia. Cell Tissue Res 207:491–498PubMedCrossRef Helen P, Zeitlin R, Hervonen A (1980) Mitochondrial accumulations in nerve fibers of human sympathetic ganglia. Cell Tissue Res 207:491–498PubMedCrossRef
go back to reference Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023PubMed Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023PubMed
go back to reference Hirano A (1985) Neurons, astrocytes, and ependyma. In: Davis RL, Robertson DM (eds)Textbook of neuropathology, Williams and Wilkins, Baltimore, pp 1–91 Hirano A (1985) Neurons, astrocytes, and ependyma. In: Davis RL, Robertson DM (eds)Textbook of neuropathology, Williams and Wilkins, Baltimore, pp 1–91
go back to reference Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315PubMedCrossRef Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121:305–315PubMedCrossRef
go back to reference Karlsson U, Schultz RL (1966) Fixation of the central nervous system for electron microscopy by aldehyde perfusion. III. Structural changes after exsanguinations and delayed perfusion. J Ultrastruct Res 14:47–63CrossRef Karlsson U, Schultz RL (1966) Fixation of the central nervous system for electron microscopy by aldehyde perfusion. III. Structural changes after exsanguinations and delayed perfusion. J Ultrastruct Res 14:47–63CrossRef
go back to reference Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, Gonzalez-DeWhitt PA, Greenberg BD, Gambetti P, Perry G (1992) Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Path 140:947–958PubMed Kawai M, Cras P, Richey P, Tabaton M, Lowery DE, Gonzalez-DeWhitt PA, Greenberg BD, Gambetti P, Perry G (1992) Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer’s disease. Am J Path 140:947–958PubMed
go back to reference Kawarabayashi T, Shoji M, Yamaguchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S (1993) Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 153:73–76PubMedCrossRef Kawarabayashi T, Shoji M, Yamaguchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S (1993) Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 153:73–76PubMedCrossRef
go back to reference Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253PubMedCrossRef Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253PubMedCrossRef
go back to reference Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311PubMedCrossRef Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311PubMedCrossRef
go back to reference Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia: a histochemical and electron microscopic study. Lab Invest 14:381–396PubMed Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia: a histochemical and electron microscopic study. Lab Invest 14:381–396PubMed
go back to reference Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H (2005a) Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 1045:224–228PubMed Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H (2005a) Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 1045:224–228PubMed
go back to reference Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005b) Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res 1031:222–228PubMedCrossRef Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005b) Soluble Abeta oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res 1031:222–228PubMedCrossRef
go back to reference Kokubo H, Saido TC, Iwata N, Helms JB, Shinohara R, Yamaguchi H (2005c) Part of membrane-bound Abeta exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiol Aging 26:409–418PubMedCrossRef Kokubo H, Saido TC, Iwata N, Helms JB, Shinohara R, Yamaguchi H (2005c) Part of membrane-bound Abeta exists in rafts within senile plaques in Tg2576 mouse brain. Neurobiol Aging 26:409–418PubMedCrossRef
go back to reference Lankford KL, Klein WL (1990) Ultrastructure of individual neurons isolated from avian retina: occurrence of microtubule loops in dendrites. Brain Res Dev Brain Res 51:217–224PubMedCrossRef Lankford KL, Klein WL (1990) Ultrastructure of individual neurons isolated from avian retina: occurrence of microtubule loops in dendrites. Brain Res Dev Brain Res 51:217–224PubMedCrossRef
go back to reference Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808PubMed Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808PubMed
go back to reference Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollack S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452PubMedCrossRef Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollack S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue L-F, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452PubMedCrossRef
go back to reference Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Gen 15:1437–1449PubMedCrossRef Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Gen 15:1437–1449PubMedCrossRef
go back to reference Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters C, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88:1461–1465PubMedCrossRef Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters C, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88:1461–1465PubMedCrossRef
go back to reference Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145:1358–1381PubMed Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial responses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145:1358–1381PubMed
go back to reference Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 66:525–532PubMed Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 66:525–532PubMed
go back to reference Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9(3 suppl):277–289PubMed Nixon RA, Cataldo AM (2006) Lysosomal system pathways: genes to neurodegeneration in Alzheimer’s disease. J Alzheimers Dis 9(3 suppl):277–289PubMed
go back to reference Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropath Exp Neurol 64:113–122PubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropath Exp Neurol 64:113–122PubMed
go back to reference Peters A (1991) Aging in monkey cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Normal and altered states of function, vol 9. Plenum Press, New York, pp 485–510 Peters A (1991) Aging in monkey cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex. Normal and altered states of function, vol 9. Plenum Press, New York, pp 485–510
go back to reference Peters A, Palay SL, Webster HdeF (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York Peters A, Palay SL, Webster HdeF (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York
go back to reference Peters A, Leahu D, Moss MB, McNally KJ (1994) The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex 6:621–635CrossRef Peters A, Leahu D, Moss MB, McNally KJ (1994) The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex 6:621–635CrossRef
go back to reference Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068PubMedCrossRef Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068PubMedCrossRef
go back to reference Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996a) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol (Berl) 91:226–235CrossRef Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996a) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol (Berl) 91:226–235CrossRef
go back to reference Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996b) Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: an index of oxidative stress. Acta Neuropathol (Berl) 91:1–5CrossRef Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996b) Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: an index of oxidative stress. Acta Neuropathol (Berl) 91:1–5CrossRef
go back to reference Purpura DP, Pappas GD, Baker HJ (1978) Fine structure of meganeurites and secondary growth processes in feline GM1-gangliosidosis. Brain Res 143:1–12PubMedCrossRef Purpura DP, Pappas GD, Baker HJ (1978) Fine structure of meganeurites and secondary growth processes in feline GM1-gangliosidosis. Brain Res 143:1–12PubMedCrossRef
go back to reference Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5:2801–2808PubMed Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5:2801–2808PubMed
go back to reference Roos J, Hummel T, Ng N, Klambt C, Davis GW (2000) Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382PubMedCrossRef Roos J, Hummel T, Ng N, Klambt C, Davis GW (2000) Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382PubMedCrossRef
go back to reference Rui Y, Tiwari P, Xie Z, Zheng JQ (2006) Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J Neurosci 26:10480–10487PubMedCrossRef Rui Y, Tiwari P, Xie Z, Zheng JQ (2006) Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J Neurosci 26:10480–10487PubMedCrossRef
go back to reference Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol (Berl) 94:471–478CrossRef Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol (Berl) 94:471–478CrossRef
go back to reference Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287PubMedCrossRef Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287PubMedCrossRef
go back to reference Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627PubMedCrossRef Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627PubMedCrossRef
go back to reference Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275PubMedCrossRef Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361:267–275PubMedCrossRef
go back to reference Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 8:276–284PubMedCrossRef Suzuki K, Terry RD (1967) Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 8:276–284PubMedCrossRef
go back to reference Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879PubMed Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879PubMed
go back to reference Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599PubMedCrossRef Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599PubMedCrossRef
go back to reference Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O’Connor M (eds) Alzheimer’s disease and related conditions. J. & A. Churchill, London, pp 145–168 Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O’Connor M (eds) Alzheimer’s disease and related conditions. J. & A. Churchill, London, pp 145–168
go back to reference Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (eds) Aging and the brain. Plenum Press, New York, pp 89–116 Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (eds) Aging and the brain. Plenum Press, New York, pp 89–116
go back to reference Tomlinson BE (1992) Ageing and the dementias. In: Adams JH, Duchen LW (eds) Greenfield’s neuropathology. Oxford University Press, New York, pp 1284–1410 Tomlinson BE (1992) Ageing and the dementias. In: Adams JH, Duchen LW (eds) Greenfield’s neuropathology. Oxford University Press, New York, pp 1284–1410
go back to reference Tsai J, Grutzendler J, Duff K, Gan W-B (2004) Fibrillar amyloid deposition leads to synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183PubMedCrossRef Tsai J, Grutzendler J, Duff K, Gan W-B (2004) Fibrillar amyloid deposition leads to synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183PubMedCrossRef
go back to reference Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530PubMedCrossRef Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84:513–530PubMedCrossRef
go back to reference Uno H, Alsum PB, Dong S, Richardson R, Zimbric ML, Thieme CS, Houser WD (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 17(2):275–281PubMedCrossRef Uno H, Alsum PB, Dong S, Richardson R, Zimbric ML, Thieme CS, Houser WD (1996) Cerebral amyloid angiopathy and plaques, and visceral amyloidosis in aged macaques. Neurobiol Aging 17(2):275–281PubMedCrossRef
go back to reference Webster HD (1962) Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J Cell Biol 12:361–383PubMedCrossRef Webster HD (1962) Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J Cell Biol 12:361–383PubMedCrossRef
go back to reference Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol (Berl) 100:356–364CrossRef Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol (Berl) 100:356–364CrossRef
go back to reference Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropath Exp Neurol 32:566–584PubMedCrossRef Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropath Exp Neurol 32:566–584PubMedCrossRef
go back to reference Yan SD, Xiong W-C, Stern DM (2006) Mitochondrial amyloid-beta peptide: pathogenesis or late-phase development. J Alz Dis 9:127–137 Yan SD, Xiong W-C, Stern DM (2006) Mitochondrial amyloid-beta peptide: pathogenesis or late-phase development. J Alz Dis 9:127–137
go back to reference Yong AP, Bednarski E, Gall CM, Lynch G, Ribak CE (1999) Lysosomal dysfunction results in lamina-specific meganeurite formation but not apoptosis in frontal cortex. Exp Neurol 157:150–160PubMedCrossRef Yong AP, Bednarski E, Gall CM, Lynch G, Ribak CE (1999) Lysosomal dysfunction results in lamina-specific meganeurite formation but not apoptosis in frontal cortex. Exp Neurol 157:150–160PubMedCrossRef
go back to reference Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98PubMedCrossRef Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98PubMedCrossRef
go back to reference Zheng L, Roberg K, Jerhammar F, Marcusson J, Terman A (2006) Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett 394:184–189PubMedCrossRef Zheng L, Roberg K, Jerhammar F, Marcusson J, Terman A (2006) Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci Lett 394:184–189PubMedCrossRef
Metadata
Title
Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments
Authors
John C. Fiala
Marcia Feinberg
Alan Peters
Helen Barbas
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 2/2007
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-007-0153-1

Other articles of this Issue 2/2007

Brain Structure and Function 2/2007 Go to the issue