Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury

Authors: Evgeni Yu. Zernii, Olga S. Gancharova, Veronika V. Tiulina, Andrey A. Zamyatnin Jr, Pavel P. Philippov, Viktoriia E. Baksheeva, Ivan I. Senin

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

Cornea protects the eye against natural and anthropogenic ultraviolet (UV) damage and mechanical injury. Corneal incisions produced by UV lasers in ophthalmic surgeries are often complicated by oxidative stress and inflammation, which delay wound healing and result in vision deterioration. This study trialed a novel approach to prevention and treatment of iatrogenic corneal injuries using SkQ1, a mitochondria-targeted antioxidant approved for therapy of polyethiological dry eye disease.

Methods

Rabbit models of UV-induced and mechanical corneal damage were employed. The animals were premedicated or treated with conjunctival instillations of 7.5 μM SkQ1. Corneal damage was assessed by fluorescein staining and histological analysis. Oxidative stress in cornea was monitored by measuring malondialdehyde (MDA) using thiobarbituric acid assay. Total antioxidant activity (AOA) was determined using hemoglobin/H2O2/luminol assay. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were measured using colorimetric assays.

Results

In both models corneas exhibited fluorescein-stained lesions, histologically manifesting as basal membrane denudation, apoptosis of keratocytes, and stromal edema, which were accompanied by oxidative stress as indicated by increase in lipid peroxidation and decline in AOA. The UV-induced lesions were more severe and long healing as corneal endothelium was involved and GPx and SOD were downregulated. The treatment inhibited loss of keratocytes and other cells, facilitated re-epithelialization and stromal remodeling, and reduced inflammatory infiltrations and edema thereby accelerating corneal healing approximately 2-fold. Meanwhile the premedication almost completely prevented development of UV-induced lesions. Both therapies reduced oxidative stress, but only premedication inhibited downregulation of the innate antioxidant activity of the cornea.

Conclusions

SkQ1 efficiently prevents UV-induced corneal damage and enhances corneal wound healing after UV and mechanical impacts common to ocular surgery. Its therapeutic action can be attributed to suppression of mitochondrial oxidative stress, which in the first case embraces all corneal cells including epitheliocytes, while in the second case affects residual endothelial cells and stromal keratocytes actively working in wound healing. We suggest SkQ1 premedication to be used in ocular surgery for preventing iatrogenic complications in the cornea.
Literature
1.
go back to reference Ringvold A, Anderssen E, Kjønniksen I. Distribution of ascorbate in the anterior bovine eye. Invest Ophthalmol Vis Sci. 2000;41(1):20–3.PubMed Ringvold A, Anderssen E, Kjønniksen I. Distribution of ascorbate in the anterior bovine eye. Invest Ophthalmol Vis Sci. 2000;41(1):20–3.PubMed
2.
go back to reference Cejková J, Stípek S, Crkovská J, Ardan T, Pláteník J, Cejka C, et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 2004;53(1):1–10.PubMed Cejková J, Stípek S, Crkovská J, Ardan T, Pláteník J, Cejka C, et al. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 2004;53(1):1–10.PubMed
4.
go back to reference Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983;96(6):710–5.PubMedCrossRef Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983;96(6):710–5.PubMedCrossRef
5.
go back to reference Razhev AM, Chernykh VV, Bagayev SN, Churkin DS, Kargapol’tsev ES, Iskakov IA, et al. Pulsed UV laser technologies for ophthalmic surgery. J Phys Conf Ser. 2017;793:012022.CrossRef Razhev AM, Chernykh VV, Bagayev SN, Churkin DS, Kargapol’tsev ES, Iskakov IA, et al. Pulsed UV laser technologies for ophthalmic surgery. J Phys Conf Ser. 2017;793:012022.CrossRef
6.
go back to reference Shapira Y, Mimouni M, Levartovsky S, Varssano D, Sela T, Munzer G, et al. Comparison of three epithelial removal techniques in PRK: mechanical, alcohol-assisted, and Transepithelial laser. J Refract Surg. 2015;31(11):760–6.PubMedCrossRef Shapira Y, Mimouni M, Levartovsky S, Varssano D, Sela T, Munzer G, et al. Comparison of three epithelial removal techniques in PRK: mechanical, alcohol-assisted, and Transepithelial laser. J Refract Surg. 2015;31(11):760–6.PubMedCrossRef
7.
go back to reference Krueger RR, Trokel SL, Schubert HD. Interaction of ultraviolet laser light with the cornea. Invest Ophthalmol Vis Sci. 1985;26(11):1455–64.PubMed Krueger RR, Trokel SL, Schubert HD. Interaction of ultraviolet laser light with the cornea. Invest Ophthalmol Vis Sci. 1985;26(11):1455–64.PubMed
8.
go back to reference Belgorod BM, Ediger MN, Weiblinger RP, Erlandson RA. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation. Arch Ophthalmol. 1992;110(4):533–6.PubMedCrossRef Belgorod BM, Ediger MN, Weiblinger RP, Erlandson RA. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation. Arch Ophthalmol. 1992;110(4):533–6.PubMedCrossRef
9.
go back to reference Kochevar IE. Cytotoxicity and mutagenicity of excimer laser radiation. Lasers Surg Med. 1989;9(5):440–5.PubMedCrossRef Kochevar IE. Cytotoxicity and mutagenicity of excimer laser radiation. Lasers Surg Med. 1989;9(5):440–5.PubMedCrossRef
10.
go back to reference Krueger RR, Trokel SL. Quantitation of corneal ablation by ultraviolet laser light. Arch Ophthalmol. 1985;103(11):1741–2.PubMedCrossRef Krueger RR, Trokel SL. Quantitation of corneal ablation by ultraviolet laser light. Arch Ophthalmol. 1985;103(11):1741–2.PubMedCrossRef
11.
go back to reference Zinflou C, Rochette PJ. Ultraviolet A-induced oxidation in cornea: characterization of the early oxidation-related events. Free Radic Biol Med. 2017;108:118–28.PubMedCrossRef Zinflou C, Rochette PJ. Ultraviolet A-induced oxidation in cornea: characterization of the early oxidation-related events. Free Radic Biol Med. 2017;108:118–28.PubMedCrossRef
12.
go back to reference Youn HY, McCanna DJ, Sivak JG, Jones LW. In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol Vis. 2011;17:237–46.PubMedPubMedCentral Youn HY, McCanna DJ, Sivak JG, Jones LW. In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol Vis. 2011;17:237–46.PubMedPubMedCentral
13.
go back to reference Brancato R, Schiavone N, Siano S, Lapucci A, Papucci L, Donnini M, et al. Prevention of corneal keratocyte apoptosis after argon fluoride excimer laser irradiation with the free radical scavenger ubiquinone Q10. Eur J Ophthalmol. 2000;10(1):32–8.PubMedCrossRef Brancato R, Schiavone N, Siano S, Lapucci A, Papucci L, Donnini M, et al. Prevention of corneal keratocyte apoptosis after argon fluoride excimer laser irradiation with the free radical scavenger ubiquinone Q10. Eur J Ophthalmol. 2000;10(1):32–8.PubMedCrossRef
14.
go back to reference Bilgihan K, Bilgihan A, Akata F, Hasanreisoglu B, Turkozkan N. Excimer laser corneal surgery and free oxygen radicals. Jpn J Ophthalmol. 1996;40(2):154–7.PubMed Bilgihan K, Bilgihan A, Akata F, Hasanreisoglu B, Turkozkan N. Excimer laser corneal surgery and free oxygen radicals. Jpn J Ophthalmol. 1996;40(2):154–7.PubMed
15.
go back to reference Choong PF, Mok PL, Cheong SK, Then KY. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy. 2007;9(3):252–8.PubMedCrossRef Choong PF, Mok PL, Cheong SK, Then KY. Mesenchymal stromal cell-like characteristics of corneal keratocytes. Cytotherapy. 2007;9(3):252–8.PubMedCrossRef
16.
go back to reference Wilson SE, Mohan RR, Mohan RR, Ambrósio R Jr, Hong J, Lee J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res. 2001;20(5):625–37.PubMedCrossRef Wilson SE, Mohan RR, Mohan RR, Ambrósio R Jr, Hong J, Lee J. The corneal wound healing response: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res. 2001;20(5):625–37.PubMedCrossRef
17.
go back to reference Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem. 2002;50(3):341–51.PubMedCrossRef Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ. Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem. 2002;50(3):341–51.PubMedCrossRef
18.
go back to reference Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry. 2008;73(12):1273–87.PubMed Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry. 2008;73(12):1273–87.PubMed
19.
go back to reference Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, et al. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta. 2009;1787(5):437–61.PubMedCrossRef Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, et al. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta. 2009;1787(5):437–61.PubMedCrossRef
20.
go back to reference Smith RAJ, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999;263(3):709–16.PubMedCrossRef Smith RAJ, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem. 1999;263(3):709–16.PubMedCrossRef
21.
go back to reference Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert -butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005;70(12):1796–806.PubMedCrossRef Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert -butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005;70(12):1796–806.PubMedCrossRef
22.
go back to reference Brzheskiy VV, Efimova EL, Vorontsova TN, Alekseev VN, Gusarevich OG, Shaidurova KN, et al. Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of Visomitin eye drops in patients with dry eye syndrome. Adv Ther. 2015;32(12):1263–79.PubMedPubMedCentralCrossRef Brzheskiy VV, Efimova EL, Vorontsova TN, Alekseev VN, Gusarevich OG, Shaidurova KN, et al. Results of a multicenter, randomized, double-masked, placebo-controlled clinical study of the efficacy and safety of Visomitin eye drops in patients with dry eye syndrome. Adv Ther. 2015;32(12):1263–79.PubMedPubMedCentralCrossRef
23.
go back to reference Petrov A, Perekhvatova N, Skulachev M, Stein L, Ousler G. SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115.PubMedPubMedCentralCrossRef Petrov A, Perekhvatova N, Skulachev M, Stein L, Ousler G. SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model. Adv Ther. 2016;33(1):96–115.PubMedPubMedCentralCrossRef
24.
go back to reference Zernii EY, Gancharova OS, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, et al. Mitochondria-targeted antioxidant SkQ1 prevents anesthesia-induced dry eye syndrome. Oxidative Med Cell Longev. 2017;2017:9281519.CrossRef Zernii EY, Gancharova OS, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, et al. Mitochondria-targeted antioxidant SkQ1 prevents anesthesia-induced dry eye syndrome. Oxidative Med Cell Longev. 2017;2017:9281519.CrossRef
25.
go back to reference Gulidova OV, Liubitskiĭ OB, Klebanov GI, Chesnokova NB. Changes in the antioxidative activity of tears during experimental eye burns. Biull Eksp Biol Med. 1999;128(11):571–4.PubMed Gulidova OV, Liubitskiĭ OB, Klebanov GI, Chesnokova NB. Changes in the antioxidative activity of tears during experimental eye burns. Biull Eksp Biol Med. 1999;128(11):571–4.PubMed
26.
go back to reference Cejkova J, Ardan T, Simonova Z, Cejka C, Malec J, Dotrelova D, et al. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjogren's syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol Histopathol. 2008;23(12):1477–83.PubMed Cejkova J, Ardan T, Simonova Z, Cejka C, Malec J, Dotrelova D, et al. Decreased expression of antioxidant enzymes in the conjunctival epithelium of dry eye (Sjogren's syndrome) and its possible contribution to the development of ocular surface oxidative injuries. Histol Histopathol. 2008;23(12):1477–83.PubMed
27.
go back to reference Zernii EY, Baksheev VE, Kabanova EI, Tiulina VV, Golovastova MO, Gancharova OS, et al. Effect of general anesthesia duration on recovery of secretion and biochemical properties of tear fluid in the post-anesthetic period. Bull Exp Biol Med. 2018;165(2):269–71.PubMedCrossRef Zernii EY, Baksheev VE, Kabanova EI, Tiulina VV, Golovastova MO, Gancharova OS, et al. Effect of general anesthesia duration on recovery of secretion and biochemical properties of tear fluid in the post-anesthetic period. Bull Exp Biol Med. 2018;165(2):269–71.PubMedCrossRef
28.
go back to reference Zernii EY, Gancharova OS, Ishutina IE, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, Serebryakova MV, Sotnikova LF, Zamyatnin AA, Jr. et al. Mechanisms of perioperative corneal abrasions: alterations in tear film proteome. Biomed Khim. 2016;62(6):683-690. Zernii EY, Gancharova OS, Ishutina IE, Baksheeva VE, Golovastova MO, Kabanova EI, Savchenko MS, Serebryakova MV, Sotnikova LF, Zamyatnin AA, Jr. et al. Mechanisms of perioperative corneal abrasions: alterations in tear film proteome. Biomed Khim. 2016;62(6):683-690.
29.
go back to reference Dastjerdi MH, Sugar A. Corneal decompensation after laser in situ keratomileusis in fuchs' endothelial dystrophy. Cornea. 2003;22(4):379–81.PubMedCrossRef Dastjerdi MH, Sugar A. Corneal decompensation after laser in situ keratomileusis in fuchs' endothelial dystrophy. Cornea. 2003;22(4):379–81.PubMedCrossRef
30.
go back to reference Moshirfar M, Barsam CA, Tanner MC. Laser in situ keratomileusis in patients with posterior polymorphous dystrophy. Cornea. 2005;24(2):230–2.PubMedCrossRef Moshirfar M, Barsam CA, Tanner MC. Laser in situ keratomileusis in patients with posterior polymorphous dystrophy. Cornea. 2005;24(2):230–2.PubMedCrossRef
31.
go back to reference Woreta FA, Davis GW, Bower KS. LASIK and surface ablation in corneal dystrophies. Surv Ophthalmol. 2015;60(2):115–22.PubMedCrossRef Woreta FA, Davis GW, Bower KS. LASIK and surface ablation in corneal dystrophies. Surv Ophthalmol. 2015;60(2):115–22.PubMedCrossRef
32.
go back to reference Sliney DH, Krueger RR, Trokel SL, Rappaport KD. Photokeratitis from 193 nm argon-fluoride laser radiation. Photochem Photobiol. 1991;53(6):739–44.PubMedCrossRef Sliney DH, Krueger RR, Trokel SL, Rappaport KD. Photokeratitis from 193 nm argon-fluoride laser radiation. Photochem Photobiol. 1991;53(6):739–44.PubMedCrossRef
33.
go back to reference Al-Sharif EM, Stone DU. Correlation between practice location as a surrogate for UV exposure and practice patterns to prevent corneal haze after photorefractive keratectomy (PRK). Saudi J Ophthalmol. 2016;30(4):213–6.PubMedPubMedCentralCrossRef Al-Sharif EM, Stone DU. Correlation between practice location as a surrogate for UV exposure and practice patterns to prevent corneal haze after photorefractive keratectomy (PRK). Saudi J Ophthalmol. 2016;30(4):213–6.PubMedPubMedCentralCrossRef
34.
go back to reference Zernii EY, Baksheeva VE, Iomdina EN, Averina OA, Permyakov SE, Philippov PP, et al. Rabbit models of ocular diseases: new relevance for classical approaches. CNS Neurol Disord Drug Targets. 2016;15(3):267–91.PubMedCrossRef Zernii EY, Baksheeva VE, Iomdina EN, Averina OA, Permyakov SE, Philippov PP, et al. Rabbit models of ocular diseases: new relevance for classical approaches. CNS Neurol Disord Drug Targets. 2016;15(3):267–91.PubMedCrossRef
35.
go back to reference Cejka C, Ardan T, Sirc J, Michálek J, Beneš J, Brůnová B, et al. Hydration and transparency of the rabbit cornea irradiated with UVB-doses of 0.25 J/cm(2) and 0.5 J/cm(2) compared with equivalent UVB radiation exposure reaching the human cornea from sunlight. Curr Eye Res. 2011;36(7):607–13.PubMedCrossRef Cejka C, Ardan T, Sirc J, Michálek J, Beneš J, Brůnová B, et al. Hydration and transparency of the rabbit cornea irradiated with UVB-doses of 0.25 J/cm(2) and 0.5 J/cm(2) compared with equivalent UVB radiation exposure reaching the human cornea from sunlight. Curr Eye Res. 2011;36(7):607–13.PubMedCrossRef
36.
go back to reference Cejka C, Rosina J, Sirc J, Michalek J, Brunova B, Cejkova J. The reversibility of UV-B induced alterations in optical properties of the rabbit cornea depends on dose of UV irradiation. Photochem Photobiol. 2013;89(2):474–82.PubMedCrossRef Cejka C, Rosina J, Sirc J, Michalek J, Brunova B, Cejkova J. The reversibility of UV-B induced alterations in optical properties of the rabbit cornea depends on dose of UV irradiation. Photochem Photobiol. 2013;89(2):474–82.PubMedCrossRef
37.
go back to reference Cejka C, Luyckx J, Cejková J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiol Res. 2012;61(3):299–306.PubMed Cejka C, Luyckx J, Cejková J. Central corneal thickness considered an index of corneal hydration of the UVB irradiated rabbit cornea as influenced by UVB absorber. Physiol Res. 2012;61(3):299–306.PubMed
38.
go back to reference Cejkova J, Stipek S, Crkovska J, Ardan T, Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histol Histopathol. 2001;16(2):523–33.PubMed Cejkova J, Stipek S, Crkovska J, Ardan T, Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histol Histopathol. 2001;16(2):523–33.PubMed
39.
go back to reference Glupker CD, Boersma PM, Schotanus MP, Haarsma LD, Ubels JL. Apoptosis of corneal epithelial cells caused by ultraviolet B-induced loss of K(+) is inhibited by Ba(2.). Ocul Surf. 2016;14(3):401–9.PubMedPubMedCentralCrossRef Glupker CD, Boersma PM, Schotanus MP, Haarsma LD, Ubels JL. Apoptosis of corneal epithelial cells caused by ultraviolet B-induced loss of K(+) is inhibited by Ba(2.). Ocul Surf. 2016;14(3):401–9.PubMedPubMedCentralCrossRef
40.
go back to reference Qiang L, Wu C, Ming M, Viollet B, He YY. Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem. 2013;288(3):1603–11.PubMedCrossRef Qiang L, Wu C, Ming M, Viollet B, He YY. Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem. 2013;288(3):1603–11.PubMedCrossRef
41.
go back to reference Bess AS, Ryde IT, Hinton DE, Meyer JN. UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol. 2013;27(1):28–41.PubMedCrossRef Bess AS, Ryde IT, Hinton DE, Meyer JN. UVC-induced mitochondrial degradation via autophagy correlates with mtDNA damage removal in primary human fibroblasts. J Biochem Mol Toxicol. 2013;27(1):28–41.PubMedCrossRef
42.
go back to reference Dua HS, Saini JS, Azuara-Blanco A, Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol. 2000;48(2):83.PubMed Dua HS, Saini JS, Azuara-Blanco A, Gupta P. Limbal stem cell deficiency: concept, aetiology, clinical presentation, diagnosis and management. Indian J Ophthalmol. 2000;48(2):83.PubMed
43.
go back to reference Cejková J, Cejka C, Luyckx J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histol Histopathol. 2012;27(8):1029–40.PubMed Cejková J, Cejka C, Luyckx J. Trehalose treatment accelerates the healing of UVB-irradiated corneas. Comparative immunohistochemical studies on corneal cryostat sections and corneal impression cytology. Histol Histopathol. 2012;27(8):1029–40.PubMed
44.
go back to reference Bende T, Seiler T, Wollensak J. Side effects in excimer corneal surgery. Graefes Arch Clin Exp Ophthalmol. 1988;226(3):277–80.PubMedCrossRef Bende T, Seiler T, Wollensak J. Side effects in excimer corneal surgery. Graefes Arch Clin Exp Ophthalmol. 1988;226(3):277–80.PubMedCrossRef
45.
go back to reference Savini G, Barboni P, Zanini M. The incidence and risk factors for developing dry eye after myopic LASIK. Am J Ophthalmol. 2006;142(2):355–6 author reply 6.PubMedCrossRef Savini G, Barboni P, Zanini M. The incidence and risk factors for developing dry eye after myopic LASIK. Am J Ophthalmol. 2006;142(2):355–6 author reply 6.PubMedCrossRef
46.
go back to reference Toda I, Asano-Kato N, Komai-Hori Y, Tsubota K. Dry eye after laser in situ keratomileusis. Am J Ophthalmol. 2001;132(1):1–7.PubMedCrossRef Toda I, Asano-Kato N, Komai-Hori Y, Tsubota K. Dry eye after laser in situ keratomileusis. Am J Ophthalmol. 2001;132(1):1–7.PubMedCrossRef
47.
go back to reference Tomás-Juan J, Murueta-Goyena Larrañaga A, Hanneken L. Corneal regeneration after photorefractive keratectomy: a review. J Optom. 2015;8(3):149–69.PubMedCrossRef Tomás-Juan J, Murueta-Goyena Larrañaga A, Hanneken L. Corneal regeneration after photorefractive keratectomy: a review. J Optom. 2015;8(3):149–69.PubMedCrossRef
48.
go back to reference Lee JB, Seong GJ, Lee JH, Seo KY, Lee YG, Kim EK. Comparison of laser epithelial keratomileusis and photorefractive keratectomy for low to moderate myopia. J Cataract Refract Surg. 2001;27(4):565–70.PubMedCrossRef Lee JB, Seong GJ, Lee JH, Seo KY, Lee YG, Kim EK. Comparison of laser epithelial keratomileusis and photorefractive keratectomy for low to moderate myopia. J Cataract Refract Surg. 2001;27(4):565–70.PubMedCrossRef
49.
go back to reference Rogers CS, Chan LM, Sims YS, Byrd KD, Hinton DL, Twining SS. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res. 2004;78(5):1007–14. Rogers CS, Chan LM, Sims YS, Byrd KD, Hinton DL, Twining SS. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res. 2004;78(5):1007–14.
50.
go back to reference Arnal E, Peris-Martínez C, Menezo JL, Johnsen-Soriano S, Romero FJ. Oxidative stress in keratoconus? Invest Ophthalmol Vis Sci. 2011;52(12):8592–7.PubMedCrossRef Arnal E, Peris-Martínez C, Menezo JL, Johnsen-Soriano S, Romero FJ. Oxidative stress in keratoconus? Invest Ophthalmol Vis Sci. 2011;52(12):8592–7.PubMedCrossRef
51.
go back to reference Bilgihan K, Bilgihan A, Adiguzel U, Sezer C, Yis O, Akyol G, et al. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery. Eye. 2002;16(1):63–8.PubMedCrossRef Bilgihan K, Bilgihan A, Adiguzel U, Sezer C, Yis O, Akyol G, et al. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery. Eye. 2002;16(1):63–8.PubMedCrossRef
52.
go back to reference Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, et al. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci. 1999;40(6):1245–9.PubMed Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, et al. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci. 1999;40(6):1245–9.PubMed
53.
go back to reference Shimmura S, Tadano K, Tsubota K. UV dose-dependent caspase activation in a corneal epithelial cell line. Curr Eye Res. 2004;28(2):85–92.PubMedCrossRef Shimmura S, Tadano K, Tsubota K. UV dose-dependent caspase activation in a corneal epithelial cell line. Curr Eye Res. 2004;28(2):85–92.PubMedCrossRef
54.
go back to reference Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 2000;16(5):195–201.PubMedCrossRef Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 2000;16(5):195–201.PubMedCrossRef
55.
go back to reference Skulachev VP. New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry (Mosc). 2009;74(12):1400–3. Skulachev VP. New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry (Mosc). 2009;74(12):1400–3.
56.
go back to reference Cejková J, Cejka C, Zvárová J. Effects of inhibition of urokinase-type plasminogen activator (u-PA) by amiloride in the cornea and tear fluid of eyes irradiated with UVB. Acta Histochem. 2005;107(1):77–86.PubMedCrossRef Cejková J, Cejka C, Zvárová J. Effects of inhibition of urokinase-type plasminogen activator (u-PA) by amiloride in the cornea and tear fluid of eyes irradiated with UVB. Acta Histochem. 2005;107(1):77–86.PubMedCrossRef
57.
go back to reference Edelhauser HF. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 2000;19(3):263–73.PubMedCrossRef Edelhauser HF. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea. 2000;19(3):263–73.PubMedCrossRef
58.
go back to reference Riley MV. Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration. Exp Eye Res. 1977;25(5):483–94.PubMedCrossRef Riley MV. Anion-sensitive ATPase in rabbit corneal endothelium and its relation to corneal hydration. Exp Eye Res. 1977;25(5):483–94.PubMedCrossRef
59.
go back to reference Fischbarg J, Lim JJ. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J Physiol. 1974;241(3):647–75.PubMedPubMedCentralCrossRef Fischbarg J, Lim JJ. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J Physiol. 1974;241(3):647–75.PubMedPubMedCentralCrossRef
60.
go back to reference Carlson KH, Bourne WM, McLaren JW, Brubaker RF. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res. 1988;47(1):27–41.PubMedCrossRef Carlson KH, Bourne WM, McLaren JW, Brubaker RF. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res. 1988;47(1):27–41.PubMedCrossRef
61.
go back to reference Cejka C, Kossl J, Hermankova B, Holan V, Kubinova S, Zhang JH, et al. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep. 2017;7(1):18017.PubMedPubMedCentralCrossRef Cejka C, Kossl J, Hermankova B, Holan V, Kubinova S, Zhang JH, et al. Therapeutic effect of molecular hydrogen in corneal UVB-induced oxidative stress and corneal photodamage. Sci Rep. 2017;7(1):18017.PubMedPubMedCentralCrossRef
62.
go back to reference Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand. 1998;76(2):149–53.PubMedCrossRef Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand. 1998;76(2):149–53.PubMedCrossRef
63.
go back to reference Riley MV, Yates EM. Glutathione in the epithelium and endothelium of bovine and rabbit cornea. Exp Eye Res. 1977;25(4):385–9.PubMedCrossRef Riley MV, Yates EM. Glutathione in the epithelium and endothelium of bovine and rabbit cornea. Exp Eye Res. 1977;25(4):385–9.PubMedCrossRef
64.
go back to reference Atalla LR, Sevanian A, Rao NA. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988;7(10):1023–7.PubMedCrossRef Atalla LR, Sevanian A, Rao NA. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988;7(10):1023–7.PubMedCrossRef
65.
go back to reference Behndig A, Karlsson K, Johansson BO, Brännström T, Marklund SL. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Invest Ophthalmol Vis Sci. 2001;42(10):2293–6.PubMed Behndig A, Karlsson K, Johansson BO, Brännström T, Marklund SL. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Invest Ophthalmol Vis Sci. 2001;42(10):2293–6.PubMed
66.
go back to reference Behndig A, Svensson B, Marklund SL, Karlsson K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci. 1998;39(3):471–5.PubMed Behndig A, Svensson B, Marklund SL, Karlsson K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci. 1998;39(3):471–5.PubMed
67.
go back to reference Cejková J, Ardan T, Cejka C, Luyckx J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1185–94.PubMedCrossRef Cejková J, Ardan T, Cejka C, Luyckx J. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol. 2011;249(8):1185–94.PubMedCrossRef
68.
go back to reference Cejková J, Stípek S, Crkovská J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol Histopathol. 2000;15(4):1043–50.PubMed Cejková J, Stípek S, Crkovská J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol Histopathol. 2000;15(4):1043–50.PubMed
69.
go back to reference Kawerau E, Ott H. The soluble proteins of the cornea paper and immunoelectrophoretic studies. Exp Eye Res. 1961;1(2):137–IN120. Kawerau E, Ott H. The soluble proteins of the cornea paper and immunoelectrophoretic studies. Exp Eye Res. 1961;1(2):137–IN120.
70.
go back to reference Bender K, Blattner C, Knebel A, Iordanov M, Herrlich P, Rahmsdorf HJ. UV-induced signal transduction. J Photochem Photobiol B. 1997;37(1–2):1–17.PubMedCrossRef Bender K, Blattner C, Knebel A, Iordanov M, Herrlich P, Rahmsdorf HJ. UV-induced signal transduction. J Photochem Photobiol B. 1997;37(1–2):1–17.PubMedCrossRef
71.
go back to reference Tyrrell RM. Activation of mammalian gene expression by the UV component of sunlight--from models to reality. BioEssays. 1996;18(2):139–48.PubMedCrossRef Tyrrell RM. Activation of mammalian gene expression by the UV component of sunlight--from models to reality. BioEssays. 1996;18(2):139–48.PubMedCrossRef
72.
go back to reference Bode AM, Dong Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE. 2003;2003(167):RE2.PubMed Bode AM, Dong Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE. 2003;2003(167):RE2.PubMed
Metadata
Title
Mitochondria-targeted antioxidant SKQ1 protects cornea from oxidative damage induced by ultraviolet irradiation and mechanical injury
Authors
Evgeni Yu. Zernii
Olga S. Gancharova
Veronika V. Tiulina
Andrey A. Zamyatnin Jr
Pavel P. Philippov
Viktoriia E. Baksheeva
Ivan I. Senin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0996-7

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue