Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 6/2017

01-06-2017 | Original Article

MITF suppression by CH5552074 inhibits cell growth in melanoma cells

Authors: Satoshi Aida, Yukiko Sonobe, Munehiro Yuhki, Kiyoaki Sakata, Toshihiko Fujii, Hiroshi Sakamoto, Takakazu Mizuno

Published in: Cancer Chemotherapy and Pharmacology | Issue 6/2017

Login to get access

Abstract

Purpose

Although treatment of melanoma with BRAF inhibitors and immune checkpoint inhibitors achieves a high response rate, a subset of melanoma patients with intrinsic and acquired resistance are insensitive to these therapeutics, so to improve melanoma therapy other target molecules need to be found. Here, we screened our chemical library to identify an anti-melanoma agent and examined its action mechanisms to show cell growth inhibition activity.

Methods

We screened a chemical library against multiple skin cancer cell lines and conducted ingenuity pathway analysis (IPA) to investigate the mechanisms of CH5552074 activity. Suppression of microphthalmia-associated transcription factor (MITF) expression levels was determined in melanoma cells treated with CH5552074. Cell growth inhibition activity of CH5552074 was evaluated in MITF-dependent melanoma cell lines.

Results

We identified an anti-melanoma compound, CH5552074, which showed remarkable cell growth inhibition activity in melanoma cell lines. The IPA results suggested that CH5552074-sensitive cell lines had activated MITF. In further in vitro studies in the melanoma cell lines, a knockdown of MITF with siRNA resulted in cell growth inhibition, which showed that CH5552074 inhibited cell growth by reducing the expression level of MITF protein.

Conclusions

These results suggest that CH5552074 can inhibit cell growth in melanoma cells by reducing the protein level of MITF. MITF inhibition by CH5552074 would be an attractive option for melanoma treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentral Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516CrossRefPubMedPubMedCentral
2.
3.
go back to reference Larkin J, Ascierto PA, Dréno B et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876CrossRefPubMed Larkin J, Ascierto PA, Dréno B et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876CrossRefPubMed
4.
go back to reference Johannessen CM, Johnson LA, Piccioni F et al (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504(7478):138–142CrossRefPubMedPubMedCentral Johannessen CM, Johnson LA, Piccioni F et al (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504(7478):138–142CrossRefPubMedPubMedCentral
5.
go back to reference Van Allen EM, Wagle N, Sucker A et al (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4(1):94–109CrossRefPubMed Van Allen EM, Wagle N, Sucker A et al (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4(1):94–109CrossRefPubMed
6.
8.
go back to reference Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117CrossRefPubMed Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117CrossRefPubMed
9.
go back to reference Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017CrossRefPubMed Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017CrossRefPubMed
10.
go back to reference King R, Googe PB, Weilbaecher KN et al (2001) Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. The American journal of surgical pathology 25(1):51–57CrossRefPubMed King R, Googe PB, Weilbaecher KN et al (2001) Microphthalmia transcription factor expression in cutaneous benign, malignant melanocytic, and nonmelanocytic tumors. The American journal of surgical pathology 25(1):51–57CrossRefPubMed
11.
go back to reference Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414CrossRefPubMed Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414CrossRefPubMed
12.
go back to reference Wellbrock C, Rana S, Paterson H et al (2008) Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 3(7):e2734CrossRefPubMedPubMedCentral Wellbrock C, Rana S, Paterson H et al (2008) Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 3(7):e2734CrossRefPubMedPubMedCentral
13.
go back to reference Garraway LA, Widlund HR, Rubin MA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed Garraway LA, Widlund HR, Rubin MA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed
14.
go back to reference Mizuno H, Nakanishi Y, Ishii N et al (2009) A signature-based method for indexing cell cycle phase distribution from microarray profiles. BMC Genom 10(1):1–10CrossRef Mizuno H, Nakanishi Y, Ishii N et al (2009) A signature-based method for indexing cell cycle phase distribution from microarray profiles. BMC Genom 10(1):1–10CrossRef
15.
go back to reference Krämer A, Green J, Pollard J et al (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530CrossRefPubMed Krämer A, Green J, Pollard J et al (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530CrossRefPubMed
16.
go back to reference Nakanishi Y, Mizuno H, Sase H et al (2015) ERK signal suppression and sensitivity to CH5183284/Debio 1347, a selective FGFR inhibitor. Mol Cancer Ther 14(12):2831–2839CrossRefPubMed Nakanishi Y, Mizuno H, Sase H et al (2015) ERK signal suppression and sensitivity to CH5183284/Debio 1347, a selective FGFR inhibitor. Mol Cancer Ther 14(12):2831–2839CrossRefPubMed
17.
go back to reference Miller AJ, Du J, Rowan S et al (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64(2):509–516CrossRefPubMed Miller AJ, Du J, Rowan S et al (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64(2):509–516CrossRefPubMed
18.
go back to reference Du J, Fisher DE (2002) Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J Biol Chem 277(1):402–406CrossRefPubMed Du J, Fisher DE (2002) Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J Biol Chem 277(1):402–406CrossRefPubMed
19.
go back to reference Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov 13(8):588–602CrossRefPubMed Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery—past, present and future. Nat Rev Drug Discov 13(8):588–602CrossRefPubMed
20.
go back to reference Yamaguchi T, Yoshida T, Kurachi R et al (2007) Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci 98(11):1809–1816CrossRefPubMed Yamaguchi T, Yoshida T, Kurachi R et al (2007) Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci 98(11):1809–1816CrossRefPubMed
21.
go back to reference Smith MP, Ferguson J, Arozarena I et al (2013) Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst 105(1):33–46CrossRefPubMed Smith MP, Ferguson J, Arozarena I et al (2013) Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst 105(1):33–46CrossRefPubMed
22.
go back to reference Borgdorff V, Rix U, Winter GE et al (2014) A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 33(19):2531–2539CrossRefPubMed Borgdorff V, Rix U, Winter GE et al (2014) A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene 33(19):2531–2539CrossRefPubMed
23.
go back to reference Yokoyama S, Feige E, Poling LL et al (2008) Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 21(4):457–463CrossRefPubMedPubMedCentral Yokoyama S, Feige E, Poling LL et al (2008) Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 21(4):457–463CrossRefPubMedPubMedCentral
24.
go back to reference Smith Michael P, Brunton H, Rowling Emily J et al (2016) Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29(3):270–284CrossRefPubMedPubMedCentral Smith Michael P, Brunton H, Rowling Emily J et al (2016) Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29(3):270–284CrossRefPubMedPubMedCentral
25.
go back to reference Kubic JD, Young KP, Plummer RS et al (2008) Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 21(6):627–645CrossRefPubMedPubMedCentral Kubic JD, Young KP, Plummer RS et al (2008) Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res 21(6):627–645CrossRefPubMedPubMedCentral
26.
27.
go back to reference Gopal YNV, Rizos H, Chen G et al (2014) Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma. Cancer Res 74(23):7037–7047CrossRefPubMedPubMedCentral Gopal YNV, Rizos H, Chen G et al (2014) Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma. Cancer Res 74(23):7037–7047CrossRefPubMedPubMedCentral
Metadata
Title
MITF suppression by CH5552074 inhibits cell growth in melanoma cells
Authors
Satoshi Aida
Yukiko Sonobe
Munehiro Yuhki
Kiyoaki Sakata
Toshihiko Fujii
Hiroshi Sakamoto
Takakazu Mizuno
Publication date
01-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 6/2017
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-017-3317-6

Other articles of this Issue 6/2017

Cancer Chemotherapy and Pharmacology 6/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine