Skip to main content
Top
Published in: Tumor Biology 4/2016

01-04-2016 | Original Article

miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells

Authors: Aihong Mao, Yang Liu, Yali Wang, Qiuyue Zhao, Xin Zhou, Chao Sun, Cuixia Di, Jing Si, Lu Gan, Hong Zhang

Published in: Tumor Biology | Issue 4/2016

Login to get access

Abstract

miR-449a, a novel tumor suppressor, is deregulated in various malignancies, including prostate cancer. Overexpression of miR-449a induces cell cycle arrest, apoptosis, and senescence, but its role in response to ionizing radiation and underlying molecular mechanism are still unknown. Here, we report that miR-449a enhances radiation-induced G2/M phase arrest and apoptosis through modulating pRb/E2F1 and sensitizes prostate cancer cells to X-ray radiation. In wild-type Rb PC-3 cells, overexpression of miR-449a enhances radiation-induced G2/M arrest and apoptosis and promotes the sensitivity to X-ray radiation. While mutant Rb DU-145 cells are resistant to the X-ray radiation despite in the presence of miR-449a. The cell cycle distribution of DU-145 cells is not significantly altered by miR-449a in the response to ionizing radiation. Furthermore, elevated miR-449a downregulates cell cycle regulator CDC25A and oncogene HDAC1. By targeting genes involved in controlling pRb/E2F1 activity, miR-449a regulates cell cycle progression and apoptosis and consequently enhances the radiosensitivity of PC-3 cells. Thus, miR-449a, as a miRNA component of the Rb pathway, promotes the radiosensitivity of PC-3 cells through regulating pRb/E2F1.
Literature
5.
go back to reference Halimi M, Asghari SM, Sariri R, Moslemi D, Parsian H. Cellular response to ionizing radiation: a microRNA story. Int J Mol Cell Med. 2012;1(4):178–84.PubMedPubMedCentral Halimi M, Asghari SM, Sariri R, Moslemi D, Parsian H. Cellular response to ionizing radiation: a microRNA story. Int J Mol Cell Med. 2012;1(4):178–84.PubMedPubMedCentral
14.
go back to reference Li X, Li H, Zhang R, Liu J. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42. doi:10.1159/000374010.CrossRefPubMed Li X, Li H, Zhang R, Liu J. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42. doi:10.​1159/​000374010.CrossRefPubMed
17.
18.
go back to reference Johson DG, Schwarz JK, Cress WD, Nevins JR. Expression of transcription factor E2F induces quiescent cells to S phase. Nature. 1993;365:349–52.CrossRef Johson DG, Schwarz JK, Cress WD, Nevins JR. Expression of transcription factor E2F induces quiescent cells to S phase. Nature. 1993;365:349–52.CrossRef
19.
go back to reference Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature. 2003;424(6945):223–8.CrossRefPubMed Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature. 2003;424(6945):223–8.CrossRefPubMed
20.
go back to reference Mayhew CN, Bosco E, Fox SR, Okaya T, Tarapore P, Schwemberger SJ, et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 2005;65(11):4568–77.CrossRefPubMed Mayhew CN, Bosco E, Fox SR, Okaya T, Tarapore P, Schwemberger SJ, et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 2005;65(11):4568–77.CrossRefPubMed
22.
go back to reference Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML, et al. p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci. 2005;118(Pt 9):1821–32. doi:10.1242/jcs.02307.CrossRefPubMed Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML, et al. p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci. 2005;118(Pt 9):1821–32. doi:10.​1242/​jcs.​02307.CrossRefPubMed
24.
25.
go back to reference Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93. doi:10.1101/gad.1819009.CrossRefPubMedPubMedCentral Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93. doi:10.​1101/​gad.​1819009.CrossRefPubMedPubMedCentral
29.
go back to reference Albright N. Computer programs for the analysis of cellular survival data. Radiat Res. 1987;112(2):331–40.CrossRefPubMed Albright N. Computer programs for the analysis of cellular survival data. Radiat Res. 1987;112(2):331–40.CrossRefPubMed
32.
go back to reference Bookstein R, Shew JY, Chen PL, Scully P, Lee WH. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science (New York, NY). 1990;247(4943):712–5.CrossRef Bookstein R, Shew JY, Chen PL, Scully P, Lee WH. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science (New York, NY). 1990;247(4943):712–5.CrossRef
34.
go back to reference Isaacs WB, Carter BS, Ewing CM. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991;51(17):4716–20.PubMed Isaacs WB, Carter BS, Ewing CM. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991;51(17):4716–20.PubMed
35.
go back to reference Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, et al. Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res. 2003;63(11):2905–12.PubMed Gurova KV, Rokhlin OW, Budanov AV, Burdelya LG, Chumakov PM, Cohen MB, et al. Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells. Cancer Res. 2003;63(11):2905–12.PubMed
36.
37.
go back to reference Ye W, Xue J, Zhang Q, Li F, Zhang W, Chen H, et al. MiR-449a functions as a tumor suppressor in endometrial cancer by targeting CDC25A. Oncol Rep. 2014;32(3):1193–9. doi:10.3892/or.2014.3303.PubMed Ye W, Xue J, Zhang Q, Li F, Zhang W, Chen H, et al. MiR-449a functions as a tumor suppressor in endometrial cancer by targeting CDC25A. Oncol Rep. 2014;32(3):1193–9. doi:10.​3892/​or.​2014.​3303.PubMed
40.
go back to reference Noonan EJ, Place RF, Basak S, Pookot D, Li LC. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349–58.PubMedPubMedCentral Noonan EJ, Place RF, Basak S, Pookot D, Li LC. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349–58.PubMedPubMedCentral
42.
go back to reference Teyssier F, Bay JO, Dionet C, Verrelle P. Cell cycle regulation after exposure to ionizing radiation. Bull Cancer. 1999;86(4):345–57.PubMed Teyssier F, Bay JO, Dionet C, Verrelle P. Cell cycle regulation after exposure to ionizing radiation. Bull Cancer. 1999;86(4):345–57.PubMed
45.
go back to reference Bowen C, Spiegel S, Gelmann EP. Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res. 1998;58(15):3275–81.PubMed Bowen C, Spiegel S, Gelmann EP. Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res. 1998;58(15):3275–81.PubMed
Metadata
Title
miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells
Authors
Aihong Mao
Yang Liu
Yali Wang
Qiuyue Zhao
Xin Zhou
Chao Sun
Cuixia Di
Jing Si
Lu Gan
Hong Zhang
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4336-8

Other articles of this Issue 4/2016

Tumor Biology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine