Skip to main content
Top
Published in: Molecular Cancer 1/2016

Open Access 01-12-2016 | Research

RETRACTED ARTICLE: MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial–mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma

Authors: Zhenyue He, Jun Yi, Xiaolong Liu, Jing Chen, Siqi Han, Li Jin, Longbang Chen, Haizhu Song

Published in: Molecular Cancer | Issue 1/2016

Login to get access

Abstract

Background

Dysregulation of microRNAs (miRNAs) have been demonstrated to contribute to carcinogenesis. MiR-143-3p has been identified to function as a tumor suppressor in several tumors, but the role of miR-143-3p in esophageal squamous cell carcinoma (ESCC) has not been intensively investigated. Our aim was to evaluate the potential role of miR-143-3p in the progression of ESCC.

Methods

The expression levels of miR-143-3p and QKI-5 protein were measured in 80 resected ESCC tumor specimens and the clinicopathological significance of these levels determined. We also investigated the role of miR-143-3p in the regulation of QKI-5 expression in ESCC cell lines both in vivo and in vitro.

Results

MiR-143-3p levels were decreased in ESCC clinical samples and low expression of miR-143-3p was significantly associated with poor prognosis in ESCC patients. Ectopic expression of miR-143-3p suppressed proliferation and induced apoptosis in ESCC cells both in vivo and in vitro. Ectopic expression of miR-143-3p also reduced the metastatic potential of cells by selectively regulating epithelial–mesenchymal transition regulatory proteins. Furthermore, QKI-5 isoform was upregulated in ESCC tissues and was a direct target of miR-143-3p. Lastly, re-introduction of QKI-5 expression abrogated the inhibitory effects of miR-143-3p on ESCC cell proliferation and motility.

Conclusions

Our results demonstrate that miR-143-3p acts as a tumor-suppressor by targeting QKI-5 in ESCC, suggesting that miR-143-3p is a potential therapy for the treatment of ESCC.
Appendix
Available only for authorised users
Literature
3.
go back to reference Stiles BM, Nasar A, Mirza FA, Lee PC, Paul S, Port JL, et al. Worldwide Oesophageal cancer collaboration guidelines for lymphadenectomy predict survival following neoadjuvant therapy. Eur J Cardiothorac Surg. 2012;42(4):659–64. doi:10.1093/ejcts/ezs105.CrossRefPubMed Stiles BM, Nasar A, Mirza FA, Lee PC, Paul S, Port JL, et al. Worldwide Oesophageal cancer collaboration guidelines for lymphadenectomy predict survival following neoadjuvant therapy. Eur J Cardiothorac Surg. 2012;42(4):659–64. doi:10.​1093/​ejcts/​ezs105.CrossRefPubMed
5.
6.
go back to reference Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61(1):33–42. doi:10.1136/gutjnl-2011-300178.CrossRefPubMed Kong KL, Kwong DL, Chan TH, Law SY, Chen L, Li Y, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61(1):33–42. doi:10.​1136/​gutjnl-2011-300178.CrossRefPubMed
9.
go back to reference Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, et al. MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer. 2014;110(1):189–98. doi:10.1038/bjc.2013.676.CrossRefPubMed Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, et al. MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer. 2014;110(1):189–98. doi:10.​1038/​bjc.​2013.​676.CrossRefPubMed
11.
go back to reference Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14. doi:10.1002/ijc.25284.CrossRefPubMed Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010;127(12):2804–14. doi:10.​1002/​ijc.​25284.CrossRefPubMed
12.
go back to reference Hardy RJ, Loushin CL, Friedrich Jr VL, Chen Q, Ebersole TA, Lazzarini RA, et al. Neural cell type-specific expression of QKI proteins is altered in quakingviable mutant mice. J Neurosci. 1996;16(24):7941–9.CrossRef Hardy RJ, Loushin CL, Friedrich Jr VL, Chen Q, Ebersole TA, Lazzarini RA, et al. Neural cell type-specific expression of QKI proteins is altered in quakingviable mutant mice. J Neurosci. 1996;16(24):7941–9.CrossRef
16.
go back to reference Zhao Y, Zhang G, Wei M, Lu X, Fu H, Feng F, et al. The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein. Cancer Biol Ther. 2014;15(1):108–18. doi:10.4161/cbt.26722.CrossRefPubMed Zhao Y, Zhang G, Wei M, Lu X, Fu H, Feng F, et al. The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein. Cancer Biol Ther. 2014;15(1):108–18. doi:10.​4161/​cbt.​26722.CrossRefPubMed
21.
go back to reference Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753–60. doi:10.3892/mmr.2011.696.CrossRefPubMed Liu L, Yu X, Guo X, Tian Z, Su M, Long Y, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep. 2012;5(3):753–60. doi:10.​3892/​mmr.​2011.​696.CrossRefPubMed
24.
go back to reference Larocque D, Galarneau A, Liu HN, Scott M, Almazan G, Richard S. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat Neurosci. 2005;8(1):27–33. doi:10.1038/nn1359.CrossRefPubMed Larocque D, Galarneau A, Liu HN, Scott M, Almazan G, Richard S. Protection of p27(Kip1) mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat Neurosci. 2005;8(1):27–33. doi:10.​1038/​nn1359.CrossRefPubMed
25.
go back to reference Saccomanno L, Loushin C, Jan E, Punkay E, Artzt K, Goodwin EB. The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci U S A. 1999;96(22):12605–10.CrossRef Saccomanno L, Loushin C, Jan E, Punkay E, Artzt K, Goodwin EB. The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci U S A. 1999;96(22):12605–10.CrossRef
26.
28.
go back to reference Tili E, Chiabai M, Palmieri D, Brown M, Cui R, Fernandes C, et al. Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget. 2015;6(28):24599–610.CrossRef Tili E, Chiabai M, Palmieri D, Brown M, Cui R, Fernandes C, et al. Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget. 2015;6(28):24599–610.CrossRef
Metadata
Title
RETRACTED ARTICLE: MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial–mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma
Authors
Zhenyue He
Jun Yi
Xiaolong Liu
Jing Chen
Siqi Han
Li Jin
Longbang Chen
Haizhu Song
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2016
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-016-0533-3

Other articles of this Issue 1/2016

Molecular Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine