Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

miR-10b exerts oncogenic activity in human hepatocellular carcinoma cells by targeting expression of CUB and sushi multiple domains 1 (CSMD1)

Authors: Qiao Zhu, Li Gong, Jun Wang, Qian Tu, Li Yao, Jia-Rui Zhang, Xiu-Juan Han, Shao-Jun Zhu, Shu-Mei Wang, Yan-Hong Li, Wei Zhang

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is a lethal disease, while the precise underlying molecular mechanisms of HCC pathogenesis remain to be defined. MicroRNA (miRNA), a class of non-coding small RNAs, can post-transcriptionally regulate gene expression. Altered miRNA expression has been reported in HCCs. This study assessed expression and the oncogenic activity of miRNA-10b (miR-10b) in HCC.

Methods

Forty-five paired human HCC and adjacent non-tumor tissues were collected for qRT-PCR and immunohistochemistry analysis of miR-10b and CUB and Sushi multiple domains 1 (CSMD1), respectively. We analyzed the clinicopathological data from these patients to further determine if there was an association between miR-10b and CSMD1. HCC cell lines were used to assess the effects of miR-10b mimics or inhibitors on cell viability, migration, invasion, cell cycle distribution, and colony formation. Luciferase assay was used to assess miR-10b binding to the 3’-untranslated region (3’-UTR) of CSMD1.

Results

miR-10b was highly expressed in HCC tissues compared to normal tissues. In vitro, overexpression of miR-10b enhanced HCC cell viability, migration, and invasion; whereas, downregulation of miR-10b expression suppressed these properties in HCC cells. Injection of miR-10b mimics into tumor cell xenografts also promoted xenograft growth in nude mice. Bioinformatics and luciferase reporter assay demonstrated that CSMD1 was the target gene of miR-10b. Immunocytochemical, immunohistochemical, and qRT-PCR data indicated that miR-10b decreased CSMD1 expression in HCC cells.

Conclusions

We showed that miR-10b is overexpressed in HCC tissues and miR-10b mimics promoted HCC cell viability and invasion via targeting CSMD1 expression. Our findings suggest that miR-10b acts as an oncogene by targeting the tumor suppressor gene, CSMD1, in HCC.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
3.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed
5.
go back to reference Chan SH, Wu CW, Li AF, Chi CW, Lin WC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 2008;28:907–11.PubMed Chan SH, Wu CW, Li AF, Chi CW, Lin WC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 2008;28:907–11.PubMed
6.
go back to reference Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk K, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309:1573–6.CrossRefPubMed Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk K, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309:1573–6.CrossRefPubMed
7.
go back to reference Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed
8.
go back to reference Nelson KM, Weiss G. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008;7:3655–60.CrossRefPubMed Nelson KM, Weiss G. MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther. 2008;7:3655–60.CrossRefPubMed
9.
10.
go back to reference Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47:1955–63.CrossRefPubMed Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47:1955–63.CrossRefPubMed
11.
go back to reference Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, et al. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett. 2010;299:29–36.CrossRefPubMed Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, et al. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett. 2010;299:29–36.CrossRefPubMed
12.
go back to reference Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery. 2011;150:916–22.CrossRefPubMed Nakata K, Ohuchida K, Mizumoto K, Kayashima T, Ikenaga N, Sakai H, et al. MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery. 2011;150:916–22.CrossRefPubMed
13.
go back to reference Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.CrossRefPubMed Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.CrossRefPubMed
14.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.CrossRefPubMed Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.CrossRefPubMed
15.
go back to reference Y, Y. Mechanism of miRNA-210 and its Target Gene SIN3A in Tumor Invasion and Metastasis of Hepatocellular Carcinoma. The second military medical university; 2012. Y, Y. Mechanism of miRNA-210 and its Target Gene SIN3A in Tumor Invasion and Metastasis of Hepatocellular Carcinoma. The second military medical university; 2012.
16.
go back to reference Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285:7986–94.CrossRefPubMedPubMedCentral Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285:7986–94.CrossRefPubMedPubMedCentral
17.
go back to reference Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, et al. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol. 2012;33:1455–65.CrossRefPubMed Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, et al. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol. 2012;33:1455–65.CrossRefPubMed
18.
go back to reference Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–72.CrossRefPubMedPubMedCentral Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–72.CrossRefPubMedPubMedCentral
19.
go back to reference Liu Y, Zhao J, Zhang PY, Zhang Y, Sun SY, Yu SY, et al. MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit. 2012;18:BR299–308. Liu Y, Zhao J, Zhang PY, Zhang Y, Sun SY, Yu SY, et al. MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit. 2012;18:BR299–308.
20.
go back to reference Ibrahim SA, Yip GW, Stock C, Pan JW, Neubauer C, Poeter M, et al. Targeting of syndecan-1 by micorRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer. 2012;131:E884–96.CrossRefPubMed Ibrahim SA, Yip GW, Stock C, Pan JW, Neubauer C, Poeter M, et al. Targeting of syndecan-1 by micorRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer. 2012;131:E884–96.CrossRefPubMed
21.
go back to reference Liao CG, Kong LM, Zhou P, Yang XL, Huang JG, Zhang HL, et al. miR-10b is overexpressed in hepatocellular carcinoma cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J Transl Med. 2014;12:234. Liao CG, Kong LM, Zhou P, Yang XL, Huang JG, Zhang HL, et al. miR-10b is overexpressed in hepatocellular carcinoma cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J Transl Med. 2014;12:234.
22.
go back to reference Sakurai-Yageta M, Masuda M, Tsuboi Y, Ito A, Murakami Y. Tumor suppressor CADM is involved in epithelial cell structure. Biochem Biophys Res Commun. 2009;390:977–82.CrossRefPubMed Sakurai-Yageta M, Masuda M, Tsuboi Y, Ito A, Murakami Y. Tumor suppressor CADM is involved in epithelial cell structure. Biochem Biophys Res Commun. 2009;390:977–82.CrossRefPubMed
23.
go back to reference Sun PC, Uppaluri R, Schmidt AP, Pashia ME, Quant EC, Sunwoo JB, et al. Transcript map of the 8p23 putative tumor suppressor region. Genomics. 2001;75:17–25.CrossRefPubMed Sun PC, Uppaluri R, Schmidt AP, Pashia ME, Quant EC, Sunwoo JB, et al. Transcript map of the 8p23 putative tumor suppressor region. Genomics. 2001;75:17–25.CrossRefPubMed
24.
go back to reference Ma C, Quesnelle KM, Sparano A, Rao S, Park MS, Cohen MA, et al. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol Ther. 2009;8:907–16.CrossRefPubMed Ma C, Quesnelle KM, Sparano A, Rao S, Park MS, Cohen MA, et al. Characterization CSMD1 in a large set of primary lung, head and neck, breast and skin cancer tissues. Cancer Biol Ther. 2009;8:907–16.CrossRefPubMed
25.
go back to reference Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H, et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene. 2006;25:5581–90.CrossRefPubMed Midorikawa Y, Yamamoto S, Ishikawa S, Kamimura N, Igarashi H, Sugimura H, et al. Molecular karyotyping of human hepatocellular carcinoma using single-nucleotide polymorphism arrays. Oncogene. 2006;25:5581–90.CrossRefPubMed
26.
go back to reference Midorikawa Y, Yamamoto S, Tsuji S, Kamimura N, Ishikawa S, Igarashi H, et al. Allelic imbalances and homozygous deletion on 8p23.2 for stepwise progression of hepatocarcinogenesis. Hepatology. 2009;49:513–22.CrossRefPubMed Midorikawa Y, Yamamoto S, Tsuji S, Kamimura N, Ishikawa S, Igarashi H, et al. Allelic imbalances and homozygous deletion on 8p23.2 for stepwise progression of hepatocarcinogenesis. Hepatology. 2009;49:513–22.CrossRefPubMed
27.
go back to reference Nishioka M, Kohno T, Takahashi M, Niki T, Yamada T, Sone S,e tal. Identification of a 428-kb homozygously deleted region disrupting the SEZ6L gene at 22q12.1 in a lung cancer cell line. Oncogene. 2000; 19:6251–60. Nishioka M, Kohno T, Takahashi M, Niki T, Yamada T, Sone S,e tal. Identification of a 428-kb homozygously deleted region disrupting the SEZ6L gene at 22q12.1 in a lung cancer cell line. Oncogene. 2000; 19:6251–60.
28.
go back to reference Mollenhauer J, Helmke B, Medina D, Bergmann G, Gassler N, Muller H, et al. Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis. Genes Chromosomes Cancer. 2004;39:185–94.CrossRefPubMed Mollenhauer J, Helmke B, Medina D, Bergmann G, Gassler N, Muller H, et al. Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis. Genes Chromosomes Cancer. 2004;39:185–94.CrossRefPubMed
29.
go back to reference Kamal M, Shaaban AM, Zhang L, Walker C, Gray S, Thakker N, et al. Loss of CSMD1 expression is associated with high tumour grade and poor survival in invasive ductal breast carcinoma. Breast Cancer Res Treat. 2010;121:555–63.CrossRefPubMed Kamal M, Shaaban AM, Zhang L, Walker C, Gray S, Thakker N, et al. Loss of CSMD1 expression is associated with high tumour grade and poor survival in invasive ductal breast carcinoma. Breast Cancer Res Treat. 2010;121:555–63.CrossRefPubMed
30.
go back to reference Tang MR, Wang YX, Guo S, Han SY, Wang D. CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis. 2012;17:927–37.CrossRefPubMed Tang MR, Wang YX, Guo S, Han SY, Wang D. CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis. 2012;17:927–37.CrossRefPubMed
31.
go back to reference Morris SM, Baek JY, Koszarek A, Knoblaugh SE, Knoblaugh SE, Grady WM. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology. 2012;55:121–31.CrossRefPubMed Morris SM, Baek JY, Koszarek A, Knoblaugh SE, Knoblaugh SE, Grady WM. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology. 2012;55:121–31.CrossRefPubMed
Metadata
Title
miR-10b exerts oncogenic activity in human hepatocellular carcinoma cells by targeting expression of CUB and sushi multiple domains 1 (CSMD1)
Authors
Qiao Zhu
Li Gong
Jun Wang
Qian Tu
Li Yao
Jia-Rui Zhang
Xiu-Juan Han
Shao-Jun Zhu
Shu-Mei Wang
Yan-Hong Li
Wei Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2801-4

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine