Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Minimally invasive direct lateral interbody fusion in the treatment of the thoracic and lumbar spinal tuberculosisMini-DLIF for the thoracic and lumbar spinal tuberculosis

Authors: Fengping Gan, Jianzhong Jiang, Zhaolin Xie, Shengbin Huang, Ying Li, Guoping Chen, Haitao Tan

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

To investigate the clinical efficacy of minimally invasive direct lateral approach debridement, interbody bone grafting, and interbody fusion in the treatment of the thoracic and lumbar spinal tuberculosis.

Methods

From January 2013 to January 2016, 35 cases with thoracic and lumbar spinal tuberculosis received direct lateral approach debridement, interbody bone grafting, and interbody fusion. Of the 35 cases, 16 patients were male and 19 were female and the median age was 55.2 (range 25–83). The affected segments were single interspace, and the involved vertebral bodies included: 15 cases of thoracic vertebrae (1 cases of T5/6, 2 cases of T6/7, 4 cases of T7/8, 3 cases of T8/9, 5 cases of T9/10) and 20 cases of lumbar spine (2 cases of L1/2, 6 cases of L2/3, 6 cases of L3/4, 6 cases of L4/5). After MIDLIF operation, all the patients received medication of four anti-tubercular drugs for 12 to18 months.

Results

The patients were followed up for 7 to 40 months with an average of 18.5 months. The visual analogue scale (VAS) at the last follow-up was 2.8 ± 0.5, which was significantly different from the preoperative VAS (8.2 ± 0.7). After MIDLIF, there was 5 cases occurred with transient numbness in one side of the thigh or inguinal region, and 10 cases suffered from flexion hip weakness. All the bone grafts were fused within 6~ 18 months (average of 11.5 months) after the operation.

Conclusion

Minimally invasive lateral approach interbody fusion technology have the advantage of less injury and quick recovery after surgery, which is the effective and safe treatment for thoracic and lumbar spinal tuberculosis.
Literature
1.
go back to reference Liu HC, Deng JP, Dong HY, Xiao TQ, Zhao XQ, Zhang ZD, Jiang Y, Liu ZG, Li Q, Wan KL. Molecular typing characteristic and drug susceptibility analysis of Mycobacterium tuberculosis isolates from Zigong, China. Biomed Res Int. 2016;2016(4):1–7. Liu HC, Deng JP, Dong HY, Xiao TQ, Zhao XQ, Zhang ZD, Jiang Y, Liu ZG, Li Q, Wan KL. Molecular typing characteristic and drug susceptibility analysis of Mycobacterium tuberculosis isolates from Zigong, China. Biomed Res Int. 2016;2016(4):1–7.
2.
go back to reference Tang MX, Zhang HQ, Wang YX, Guo CF, Liu JY. Treatment of spinal tuberculosis by debridement, interbody fusion and internal fixation via posterior approach only. Orthop Surg. 2016;8(1):89.CrossRefPubMedPubMedCentral Tang MX, Zhang HQ, Wang YX, Guo CF, Liu JY. Treatment of spinal tuberculosis by debridement, interbody fusion and internal fixation via posterior approach only. Orthop Surg. 2016;8(1):89.CrossRefPubMedPubMedCentral
3.
go back to reference DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80(11):1411–9.CrossRefPubMed DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80(11):1411–9.CrossRefPubMed
4.
go back to reference Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, et al. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, internet-based multicenter study of the spine study Group of the German Association of trauma surgery. Eur Spine J. 2010;19(10):1657–76.CrossRefPubMedPubMedCentral Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, et al. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, internet-based multicenter study of the spine study Group of the German Association of trauma surgery. Eur Spine J. 2010;19(10):1657–76.CrossRefPubMedPubMedCentral
5.
go back to reference Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br Vol. 2010;92(7):905.CrossRef Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br Vol. 2010;92(7):905.CrossRef
6.
go back to reference Zhang Z, Fei L, Qiang Z, Fei D, Dong S, Xu J: The outcomes of chemotherapy only treatment on mild spinal tuberculosis. J Orthop Surg Res 2016, 11(1):1–8. Zhang Z, Fei L, Qiang Z, Fei D, Dong S, Xu J: The outcomes of chemotherapy only treatment on mild spinal tuberculosis. J Orthop Surg Res 2016, 11(1):1–8.
7.
go back to reference Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20(14):1592–9.CrossRefPubMed Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine. 1995;20(14):1592–9.CrossRefPubMed
8.
go back to reference Klöckner C, Valencia R. Sagittal alignment after anterior debridement and fusion with or without additional posterior instrumentation in the treatment of pyogenic and tuberculous spondylodiscitis. Spine. 2003;28(10):1036.PubMed Klöckner C, Valencia R. Sagittal alignment after anterior debridement and fusion with or without additional posterior instrumentation in the treatment of pyogenic and tuberculous spondylodiscitis. Spine. 2003;28(10):1036.PubMed
9.
go back to reference Moon MS, Woo YK, Lee KS, Ha KY, Kim SS, Sun DH. Posterior instrumentation and anterior interbody fusion for tuberculous kyphosis of dorsal and lumbar spines. Spine. 1996;21(15):1840–1.CrossRef Moon MS, Woo YK, Lee KS, Ha KY, Kim SS, Sun DH. Posterior instrumentation and anterior interbody fusion for tuberculous kyphosis of dorsal and lumbar spines. Spine. 1996;21(15):1840–1.CrossRef
10.
go back to reference Xi-feng Zhang MD, Yan WM, Shong-hua Xiao MD, Zheng-sheng Liu MD, Yong-gang Zhang MD, Bao-wei Liu MD, Zhi-min Xia MD. Treatment of lumbar and lumbosacral spinal tuberculosis with minimally invasive surgery. Orthop Surg. 2010;2(1):64–70.CrossRefPubMed Xi-feng Zhang MD, Yan WM, Shong-hua Xiao MD, Zheng-sheng Liu MD, Yong-gang Zhang MD, Bao-wei Liu MD, Zhi-min Xia MD. Treatment of lumbar and lumbosacral spinal tuberculosis with minimally invasive surgery. Orthop Surg. 2010;2(1):64–70.CrossRefPubMed
11.
go back to reference Huang TJ, Hsu RW, Chen SH, Liu HP. Video-assisted thoracoscopic surgery in managing tuberculous spondylitis. Clin Orthop Relat Res. 2000;379(379):143–53.CrossRef Huang TJ, Hsu RW, Chen SH, Liu HP. Video-assisted thoracoscopic surgery in managing tuberculous spondylitis. Clin Orthop Relat Res. 2000;379(379):143–53.CrossRef
12.
go back to reference Kapoor SK, Agarwal PN, Jr JB, Kumar R. Video-assisted thoracoscopic decompression of tubercular spondylitis: clinical evaluation. Spine. 2005;30(20):E605.CrossRefPubMed Kapoor SK, Agarwal PN, Jr JB, Kumar R. Video-assisted thoracoscopic decompression of tubercular spondylitis: clinical evaluation. Spine. 2005;30(20):E605.CrossRefPubMed
13.
go back to reference Singh R. Video-Assisted Thoracic Surgery for Tubercular Spondylitis[M]// Tuberculosis of the Central Nervous System. Springer International Publishing. 2017:963497. Singh R. Video-Assisted Thoracic Surgery for Tubercular Spondylitis[M]// Tuberculosis of the Central Nervous System. Springer International Publishing. 2017:963497.
14.
go back to reference Barbagallo GMV, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J. 2014;05(01):028–37.CrossRef Barbagallo GMV, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J. 2014;05(01):028–37.CrossRef
15.
go back to reference Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, Peterson MD, Hyde J, Kurd M. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38(21):1853.CrossRefPubMed Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, Peterson MD, Hyde J, Kurd M. Adult degenerative scoliosis treated with XLIF: clinical and radiographical results of a prospective multicenter study with 24-month follow-up. Spine. 2013;38(21):1853.CrossRefPubMed
16.
go back to reference Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.CrossRefPubMed Anand N, Rosemann R, Khalsa B, Baron EM. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus. 2010;28(3):E6.CrossRefPubMed
17.
go back to reference Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.CrossRefPubMed Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.CrossRefPubMed
18.
go back to reference Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S368.CrossRefPubMed Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S368.CrossRefPubMed
19.
go back to reference Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–7.CrossRefPubMed Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–7.CrossRefPubMed
20.
go back to reference Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15(3):280.CrossRefPubMed Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15(3):280.CrossRefPubMed
21.
go back to reference Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26.CrossRefPubMed Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26.CrossRefPubMed
Metadata
Title
Minimally invasive direct lateral interbody fusion in the treatment of the thoracic and lumbar spinal tuberculosisMini-DLIF for the thoracic and lumbar spinal tuberculosis
Authors
Fengping Gan
Jianzhong Jiang
Zhaolin Xie
Shengbin Huang
Ying Li
Guoping Chen
Haitao Tan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2187-3

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue