Skip to main content
Top
Published in: Nutrition & Metabolism 1/2013

Open Access 01-12-2013 | Review

Milk protein for improved metabolic health: a review of the evidence

Authors: Robin A McGregor, Sally D Poppitt

Published in: Nutrition & Metabolism | Issue 1/2013

Login to get access

Abstract

Epidemiological evidence shows that consumption of dairy products is associated with decreased prevalence of metabolic related disorders, whilst evidence from experimental studies points towards dairy protein as a dietary component which may aid prevention of type 2 diabetes (T2DM). Poor metabolic health is a common characteristic of overweight, obesity and aging, and is the forerunner of T2DM and cardiovascular disease (CVD), and an ever increasing global health issue. Progressive loss of metabolic control is evident from a blunting of carbohydrate, fat and protein metabolism, which is commonly manifested through decreased insulin sensitivity, inadequate glucose and lipid control, accompanied by a pro-inflammatory environment and hypertension. Adverse physiological changes such as excess visceral adipose tissue deposition and expansion, lipid overspill and infiltration into liver, muscle and other organs, and sarcopaenia or degenerative loss of skeletal muscle mass and function all underpin this adverse profile. ‘Sarcobesity’ and sarcopaenic diabetes are rapidly growing health issues. As well as through direct mechanisms, dairy protein may indirectly improve metabolic health by aiding loss of body weight and fat mass through enhanced satiety, whilst promoting skeletal muscle growth and function through anabolic effects of dairy protein-derived branch chain amino acids (BCAAs). BCAAs enhance muscle protein synthesis, lean body mass and skeletal muscle metabolic function. The composition and processing of dairy protein has an impact on digestion, absorption, BCAA kinetics and function, hence the optimisation of dairy protein composition through selection and combination of specific protein components in milk may provide a way to maximize benefits for metabolic health.
Literature
1.
go back to reference Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF: Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005, 365 (9468): 1398-1405. Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF: Prevalence of the metabolic syndrome and overweight among adults in China. Lancet. 2005, 365 (9468): 1398-1405.
2.
go back to reference Ford ES, Li C, Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010, 2 (3): 180-193. Ford ES, Li C, Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2010, 2 (3): 180-193.
3.
go back to reference Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009, 120 (16): 1640-1645. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009, 120 (16): 1640-1645.
4.
go back to reference Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005, 112 (17): 2735-2752. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005, 112 (17): 2735-2752.
5.
go back to reference Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet. 2005, 365 (9468): 1415-1428. Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet. 2005, 365 (9468): 1415-1428.
6.
go back to reference Parr EB, Coffey VG, Hawley JA: “Sarcobesity”: a metabolic conundrum. Maturitas. 2013, 74: 109-113. Parr EB, Coffey VG, Hawley JA: “Sarcobesity”: a metabolic conundrum. Maturitas. 2013, 74: 109-113.
7.
go back to reference Kwon E-Y, Shin S-K, Cho Y-Y, Jung UJ, Kim E, Park T: Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics. 2012, 13 (1): 450. Kwon E-Y, Shin S-K, Cho Y-Y, Jung UJ, Kim E, Park T: Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics. 2012, 13 (1): 450.
8.
go back to reference Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR: The metabolic syndrome. Endocr Rev. 2008, 29 (7): 777-822. Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR: The metabolic syndrome. Endocr Rev. 2008, 29 (7): 777-822.
9.
go back to reference Nazare J-A, Smith JD, Borel A-L, Haffner SM, Balkau B, Ross R: Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International study of prediction of intra-abdominal adiposity and its relationship with cardiometabolic risk/intra-abdominal adiposity. Am J Clin Nutr. 2012, 96 (4): 714-726. Nazare J-A, Smith JD, Borel A-L, Haffner SM, Balkau B, Ross R: Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International study of prediction of intra-abdominal adiposity and its relationship with cardiometabolic risk/intra-abdominal adiposity. Am J Clin Nutr. 2012, 96 (4): 714-726.
10.
go back to reference Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 444 (7121): 860-867. Hotamisligil GS: Inflammation and metabolic disorders. Nature. 2006, 444 (7121): 860-867.
11.
go back to reference Nicklas BJ, Wang X, You T, Lyles MF, Demons J, Easter L: Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial. Am J Clin Nutr. 2009, 89 (4): 1043-1052. Nicklas BJ, Wang X, You T, Lyles MF, Demons J, Easter L: Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial. Am J Clin Nutr. 2009, 89 (4): 1043-1052.
12.
go back to reference Campbell WW, Haub MD, Wolfe RR, Ferrando AA, Sullivan DH, Apolzan JW: Resistance training preserves fat-free mass without impacting changes in protein metabolism after weight loss in older women. Obesity (Silver Spring). 2009, 17 (7): 1332-1339. Campbell WW, Haub MD, Wolfe RR, Ferrando AA, Sullivan DH, Apolzan JW: Resistance training preserves fat-free mass without impacting changes in protein metabolism after weight loss in older women. Obesity (Silver Spring). 2009, 17 (7): 1332-1339.
13.
go back to reference Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, Kong A: Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring). 2012, 20 (8): 1628-1638. Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, Kong A: Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity (Silver Spring). 2012, 20 (8): 1628-1638.
14.
go back to reference Kelley DE, Goodpaster B, Wing RR, Simoneau JA: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999, 277 (6 Pt 1): E1130-E1141. Kelley DE, Goodpaster B, Wing RR, Simoneau JA: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999, 277 (6 Pt 1): E1130-E1141.
15.
go back to reference Chung J-Y, Kang H-T, Lee D-C, Lee H-R, Lee Y-J: Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Arch Gerontol Geriatr. 2013, 56 (1): 270-278. Chung J-Y, Kang H-T, Lee D-C, Lee H-R, Lee Y-J: Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Arch Gerontol Geriatr. 2013, 56 (1): 270-278.
16.
go back to reference Malenfant P, Tremblay A, Doucet E, Imbeault P, Simoneau JA, Joanisse DR: Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. Am J Physiol Endocrinol Metab. 2001, 280 (4): E632-E639. Malenfant P, Tremblay A, Doucet E, Imbeault P, Simoneau JA, Joanisse DR: Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. Am J Physiol Endocrinol Metab. 2001, 280 (4): E632-E639.
17.
go back to reference Chevalier S, Marliss EB, Morais JA, Lamarche M, Gougeon R: Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr. 2005, 82 (2): 355-365. Chevalier S, Marliss EB, Morais JA, Lamarche M, Gougeon R: Whole-body protein anabolic response is resistant to the action of insulin in obese women. Am J Clin Nutr. 2005, 82 (2): 355-365.
18.
go back to reference Rennie MJ: Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab. 2009, 34 (3): 377-381. Rennie MJ: Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab. 2009, 34 (3): 377-381.
19.
go back to reference Pal S, Radavelli-Bagatini S: The effects of whey protein on cardiometabolic risk factors. Obes Rev. 2012, 10.1111/obr.12005. Pal S, Radavelli-Bagatini S: The effects of whey protein on cardiometabolic risk factors. Obes Rev. 2012, 10.1111/obr.12005.
20.
go back to reference Rice BH, Cifelli CJ, Pikosky MA, Miller GD: Dairy components and risk factors for cardiometabolic syndrome: recent evidence and opportunities for future research. Adv Nutr. 2011, 2 (5): 396-407. Rice BH, Cifelli CJ, Pikosky MA, Miller GD: Dairy components and risk factors for cardiometabolic syndrome: recent evidence and opportunities for future research. Adv Nutr. 2011, 2 (5): 396-407.
21.
go back to reference Sousa GTD, Lira FS, Rosa JC, De Oliveira EP, Oyama LM, Santos RV: Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis. 2012, 11: 67. Sousa GTD, Lira FS, Rosa JC, De Oliveira EP, Oyama LM, Santos RV: Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis. 2012, 11: 67.
22.
go back to reference Jakubowicz D, Froy O: Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J Nutr Biochem. 2013, 24 (1): 1-5. Jakubowicz D, Froy O: Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J Nutr Biochem. 2013, 24 (1): 1-5.
23.
go back to reference Graf S, Egert S, Heer M: Effects of whey protein supplements on metabolism: evidence from human intervention studies. Curr Opin Clin Nutr Metab Care. 2011, 14 (6): 569-580. Graf S, Egert S, Heer M: Effects of whey protein supplements on metabolism: evidence from human intervention studies. Curr Opin Clin Nutr Metab Care. 2011, 14 (6): 569-580.
24.
go back to reference Crichton GE, Bryan J, Buckley J, Murphy KJ: Dairy consumption and metabolic syndrome: a systematic review of findings and methodological issues. Obes Rev. 2011, 12 (5): e190-e201. Crichton GE, Bryan J, Buckley J, Murphy KJ: Dairy consumption and metabolic syndrome: a systematic review of findings and methodological issues. Obes Rev. 2011, 12 (5): e190-e201.
25.
go back to reference Ricci-Cabello I, Herrera MO, Artacho R: Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev. 2012, 70 (4): 241-255. Ricci-Cabello I, Herrera MO, Artacho R: Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr Rev. 2012, 70 (4): 241-255.
26.
go back to reference Esteves De Oliveira FC, Pinheiro Volp AC, Alfenas RC: Impact of different protein sources in the glycemic and insulinemic responses. Nutr Hosp. 2011, 26 (4): 669-676. Esteves De Oliveira FC, Pinheiro Volp AC, Alfenas RC: Impact of different protein sources in the glycemic and insulinemic responses. Nutr Hosp. 2011, 26 (4): 669-676.
27.
go back to reference Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR: Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 2009, 29 (1): 21-41. Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR: Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 2009, 29 (1): 21-41.
28.
go back to reference Saito T: Antihypertensive peptides derived from bovine casein and whey proteins. Adv Exp Med Biol. 2008, 606: 295-317. Saito T: Antihypertensive peptides derived from bovine casein and whey proteins. Adv Exp Med Biol. 2008, 606: 295-317.
29.
go back to reference Cross ML, Gill HS: Immunomodulatory properties of milk. Br J Nutr. 2000, 84 (S1): 81-89. Cross ML, Gill HS: Immunomodulatory properties of milk. Br J Nutr. 2000, 84 (S1): 81-89.
30.
go back to reference Fumeron F, Lamri A, Abi Khalil C, Jaziri R, Porchay-Baldérelli I, Lantieri O: Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2011, 34 (4): 813-817. Fumeron F, Lamri A, Abi Khalil C, Jaziri R, Porchay-Baldérelli I, Lantieri O: Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2011, 34 (4): 813-817.
31.
go back to reference Beydoun MA, Gary TL, Caballero BH, Lawrence RS, Cheskin LJ, Wang Y: Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr. 2008, 87 (6): 1914-1925. Beydoun MA, Gary TL, Caballero BH, Lawrence RS, Cheskin LJ, Wang Y: Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr. 2008, 87 (6): 1914-1925.
32.
go back to reference Morr CV, Ha EY: Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr. 1993, 33 (6): 431-476. Morr CV, Ha EY: Whey protein concentrates and isolates: processing and functional properties. Crit Rev Food Sci Nutr. 1993, 33 (6): 431-476.
33.
go back to reference Dalgleish DG, Corredig M: The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol. 2012, 3: 449-467. Dalgleish DG, Corredig M: The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol. 2012, 3: 449-467.
34.
go back to reference Huffman LM, Harper WJ: Maximizing the value of milk through separation technologies. J Dairy Sci. 1999, 82 (10): 2238-2244. Huffman LM, Harper WJ: Maximizing the value of milk through separation technologies. J Dairy Sci. 1999, 82 (10): 2238-2244.
35.
go back to reference Boye J, Wijesinha-Bettoni R, Burlingame B: Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr. 2012, 108: S183-S211. Boye J, Wijesinha-Bettoni R, Burlingame B: Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr. 2012, 108: S183-S211.
36.
go back to reference Dietary protein quality evaluation in human nutrition. Edited by: FAO United Nations Expert Consultation. 2011, Auckland Dietary protein quality evaluation in human nutrition. Edited by: FAO United Nations Expert Consultation. 2011, Auckland
37.
go back to reference Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, Van Loon LJ: Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011, 93 (5): 997-1005. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, Van Loon LJ: Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr. 2011, 93 (5): 997-1005.
38.
go back to reference Hall WL, Millward DJ, Long SJ, Morgan LM: Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr. 2003, 89 (2): 239-248. Hall WL, Millward DJ, Long SJ, Morgan LM: Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr. 2003, 89 (2): 239-248.
39.
go back to reference Bassil MS, Gougeon R: Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care. 2013, 16 (1): 83-88. Bassil MS, Gougeon R: Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care. 2013, 16 (1): 83-88.
40.
go back to reference Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94 (26): 14930-14935. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94 (26): 14930-14935.
41.
go back to reference Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001, 280 (2): E340-E348. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001, 280 (2): E340-E348.
42.
go back to reference Calbet JAL, Holst JJ: Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr. 2004, 43 (3): 127-139. Calbet JAL, Holst JJ: Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr. 2004, 43 (3): 127-139.
43.
go back to reference Claessens M, Saris WHM, Van Baak MA: Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br J Nutr. 2008, 100 (1): 61-69. Claessens M, Saris WHM, Van Baak MA: Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br J Nutr. 2008, 100 (1): 61-69.
44.
go back to reference Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB: Whey and casein labeled with l-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab. 2011, 300 (1): E231-E242. Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB: Whey and casein labeled with l-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab. 2011, 300 (1): E231-E242.
45.
go back to reference Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IME: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr. 2004, 80 (5): 1246-1253. Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IME: Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr. 2004, 80 (5): 1246-1253.
46.
go back to reference Nilsson M, Holst JJ, Björck IM: Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007, 85 (4): 996-1004. Nilsson M, Holst JJ, Björck IM: Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007, 85 (4): 996-1004.
47.
go back to reference Pistrosch F, Natali A, Hanefeld M: Is Hyperglycemia a cardiovascular risk factor?. Diabetes Care. 2011, 34 (S2): S128-S131. Pistrosch F, Natali A, Hanefeld M: Is Hyperglycemia a cardiovascular risk factor?. Diabetes Care. 2011, 34 (S2): S128-S131.
48.
go back to reference Gerich JE: CLinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. 2003, 163 (11): 1306-1316. Gerich JE: CLinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. 2003, 163 (11): 1306-1316.
49.
go back to reference Akhavan T, Luhovyy BL, Brown PH, Cho CE, Anderson GH: Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr. 2010, 91 (4): 966-975. Akhavan T, Luhovyy BL, Brown PH, Cho CE, Anderson GH: Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr. 2010, 91 (4): 966-975.
50.
go back to reference Claessens M, Calame W, Siemensma AD, Van Baak MA, Saris WHM: The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr. 2009, 63 (1): 48-56. Claessens M, Calame W, Siemensma AD, Van Baak MA, Saris WHM: The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr. 2009, 63 (1): 48-56.
51.
go back to reference Pal S, Ellis V: The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr. 2010, 104 (8): 1241-1248. Pal S, Ellis V: The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr. 2010, 104 (8): 1241-1248.
52.
go back to reference Gunnerud UJ, Heinzle C, Holst JJ, Ostman EM, Björck IME: Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One. 2012, 7 (9): e44731. Gunnerud UJ, Heinzle C, Holst JJ, Ostman EM, Björck IME: Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS One. 2012, 7 (9): e44731.
53.
go back to reference Frid AH, Nilsson M, Holst JJ, Björck IME: Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr. 2005, 82 (1): 69-75. Frid AH, Nilsson M, Holst JJ, Björck IME: Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr. 2005, 82 (1): 69-75.
54.
go back to reference Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL: Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care. 2009, 32 (9): 1600-1602. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL: Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care. 2009, 32 (9): 1600-1602.
55.
go back to reference Moller DE: New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001, 414 (6865): 821-827. Moller DE: New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001, 414 (6865): 821-827.
56.
go back to reference Manders RJF, Praet SFE, Meex RCR, Koopman R, De Roos AL, Wagenmakers AJM: Protein hydrolysate/leucine co-ingestion reduces the prevalence of hyperglycemia in type 2 diabetic patients. Diabetes Care. 2006, 29 (12): 2721-2722. Manders RJF, Praet SFE, Meex RCR, Koopman R, De Roos AL, Wagenmakers AJM: Protein hydrolysate/leucine co-ingestion reduces the prevalence of hyperglycemia in type 2 diabetic patients. Diabetes Care. 2006, 29 (12): 2721-2722.
57.
go back to reference Manders RJF, Praet SFE, Vikström MH, Saris WHM, Van Loon LJC: Protein hydrolysate co-ingestion does not modulate 24 h glycemic control in long-standing type 2 diabetes patients. Eur J Clin Nutr. 2009, 63 (1): 121-126. Manders RJF, Praet SFE, Vikström MH, Saris WHM, Van Loon LJC: Protein hydrolysate co-ingestion does not modulate 24 h glycemic control in long-standing type 2 diabetes patients. Eur J Clin Nutr. 2009, 63 (1): 121-126.
58.
go back to reference Van Loon LJC, Kruijshoop M, Menheere PPCA, Wagenmakers AJM, Saris WHM, Keizer HA: Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care. 2003, 26 (3): 625-630. Van Loon LJC, Kruijshoop M, Menheere PPCA, Wagenmakers AJM, Saris WHM, Keizer HA: Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care. 2003, 26 (3): 625-630.
59.
go back to reference Pal S, Ellis V, Dhaliwal S: Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br J Nutr. 2010, 104 (5): 716-723. Pal S, Ellis V, Dhaliwal S: Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br J Nutr. 2010, 104 (5): 716-723.
60.
go back to reference Ginsberg HN, Zhang Y-L, Hernandez-Ono A: Metabolic syndrome: focus on dyslipidemia. Obesity. 2006, 14 (S2): 41S-49S. Ginsberg HN, Zhang Y-L, Hernandez-Ono A: Metabolic syndrome: focus on dyslipidemia. Obesity. 2006, 14 (S2): 41S-49S.
61.
go back to reference Jackson KG, Poppitt SD, Minihane AM: Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012, 220 (1): 22-33. Jackson KG, Poppitt SD, Minihane AM: Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012, 220 (1): 22-33.
62.
go back to reference Holm C: Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003, 31 (Pt 6): 1120-1124. Holm C: Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003, 31 (Pt 6): 1120-1124.
63.
go back to reference Cohen JC: Protein ingestion does not affect postprandial lipaemia or chylomicron-triglyceride clearance. Eur J Clin Nutr. 1989, 43 (7): 497-499. Cohen JC: Protein ingestion does not affect postprandial lipaemia or chylomicron-triglyceride clearance. Eur J Clin Nutr. 1989, 43 (7): 497-499.
64.
go back to reference Westphal S, Kästner S, Taneva E, Leodolter A, Dierkes J, Luley C: Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am J Clin Nutr. 2004, 80 (2): 284-290. Westphal S, Kästner S, Taneva E, Leodolter A, Dierkes J, Luley C: Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. Am J Clin Nutr. 2004, 80 (2): 284-290.
65.
go back to reference Westphal S, Taneva E, Kästner S, Martens-Lobenhoffer J, Bode-Böger S, Kropf S: Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal. Atherosclerosis. 2006, 185 (2): 313-319. Westphal S, Taneva E, Kästner S, Martens-Lobenhoffer J, Bode-Böger S, Kropf S: Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal. Atherosclerosis. 2006, 185 (2): 313-319.
66.
go back to reference Pal S, Ellis V, Ho S: Acute effects of whey protein isolate on cardiovascular risk factors in overweight, post-menopausal women. Atherosclerosis. 2010, 212 (1): 339-344. Pal S, Ellis V, Ho S: Acute effects of whey protein isolate on cardiovascular risk factors in overweight, post-menopausal women. Atherosclerosis. 2010, 212 (1): 339-344.
67.
go back to reference Brader L, Holm L, Mortensen L, Thomsen C, Astrup A, Holst JJ: Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects. Nutr Metab Cardiovasc Dis. 2010, 20 (2): 101-109. Brader L, Holm L, Mortensen L, Thomsen C, Astrup A, Holst JJ: Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects. Nutr Metab Cardiovasc Dis. 2010, 20 (2): 101-109.
68.
go back to reference Holmer-Jensen J, Hartvigsen ML, Mortensen LS, Astrup A, De Vrese M, Holst JJ: Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects. Eur J Clin Nutr. 2012, 66 (1): 32-38. Holmer-Jensen J, Hartvigsen ML, Mortensen LS, Astrup A, De Vrese M, Holst JJ: Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects. Eur J Clin Nutr. 2012, 66 (1): 32-38.
69.
go back to reference Mortensen LS, Hartvigsen ML, Brader LJ, Astrup A, Schrezenmeir J, Holst JJ: Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr. 2009, 90 (1): 41-48. Mortensen LS, Hartvigsen ML, Brader LJ, Astrup A, Schrezenmeir J, Holst JJ: Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr. 2009, 90 (1): 41-48.
70.
go back to reference Gouni-Berthold I, Schulte DM, Krone W, Lapointe J-F, Lemieux P, Predel H-G: The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial. Br J Nutr. 2012, 107 (11): 1694-1706. Gouni-Berthold I, Schulte DM, Krone W, Lapointe J-F, Lemieux P, Predel H-G: The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial. Br J Nutr. 2012, 107 (11): 1694-1706.
71.
go back to reference Hamad EM, Taha SH, Abou Dawood A-GI, Sitohy MZ, Abdel-Hamid M: Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis. 2011, 10: 57. Hamad EM, Taha SH, Abou Dawood A-GI, Sitohy MZ, Abdel-Hamid M: Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis. 2011, 10: 57.
72.
go back to reference Kris-Etherton PM, Grieger JA, Hilpert KF, West SG: Milk products, dietary patterns and blood pressure management. J Am Coll Nutr. 2009, 28 (S1): 103S-119S. Kris-Etherton PM, Grieger JA, Hilpert KF, West SG: Milk products, dietary patterns and blood pressure management. J Am Coll Nutr. 2009, 28 (S1): 103S-119S.
73.
go back to reference Schinzari F, Tesauro M, Rovella V, Galli A, Mores N, Porzio O: Generalized impairment of vasodilator reactivity during hyperinsulinemia in patients with obesity-related metabolic syndrome. Am J Physiol Endocrinol Metab. 2010, 299 (6): E947-E952. Schinzari F, Tesauro M, Rovella V, Galli A, Mores N, Porzio O: Generalized impairment of vasodilator reactivity during hyperinsulinemia in patients with obesity-related metabolic syndrome. Am J Physiol Endocrinol Metab. 2010, 299 (6): E947-E952.
74.
go back to reference Ballard KD, Kupchak BR, Volk BM, Mah E, Shkreta A, Liptak C: Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr. 2012, 13: 1-12. Ballard KD, Kupchak BR, Volk BM, Mah E, Shkreta A, Liptak C: Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr. 2012, 13: 1-12.
75.
go back to reference Fluegel SM, Shultz TD, Powers JR, Clark S, Barbosa-Leiker C, Wright BR: Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. Int Dairy J. 2010, 20 (11): 753-760. Fluegel SM, Shultz TD, Powers JR, Clark S, Barbosa-Leiker C, Wright BR: Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. Int Dairy J. 2010, 20 (11): 753-760.
76.
go back to reference Pins JJ, Keenan JM: Effects of whey peptides on cardiovascular disease risk factors. J Clin Hypertens (Greenwich). 2006, 8 (11): 775-782. Pins JJ, Keenan JM: Effects of whey peptides on cardiovascular disease risk factors. J Clin Hypertens (Greenwich). 2006, 8 (11): 775-782.
77.
go back to reference Pal S, Ellis V: The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring). 2010, 18 (7): 1354-1359. Pal S, Ellis V: The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring). 2010, 18 (7): 1354-1359.
78.
go back to reference Sharpe SJ, Gamble GD, Sharpe DN: Cholesterol-lowering and blood pressure effects of immune milk. Am J Clin Nutr. 1994, 59 (4): 929-934. Sharpe SJ, Gamble GD, Sharpe DN: Cholesterol-lowering and blood pressure effects of immune milk. Am J Clin Nutr. 1994, 59 (4): 929-934.
79.
go back to reference Kawase M, Hashimoto H, Hosoda M, Morita H, Hosono A: Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci. 2000, 83 (2): 255-263. Kawase M, Hashimoto H, Hosoda M, Morita H, Hosono A: Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci. 2000, 83 (2): 255-263.
80.
go back to reference Xu J-Y, Qin L-Q, Wang P-Y, Li W, Chang C: Effect of milk tripeptides on blood pressure: A meta-analysis of randomized controlled trials. Nutrition. 2008, 24 (10): 933-940. Xu J-Y, Qin L-Q, Wang P-Y, Li W, Chang C: Effect of milk tripeptides on blood pressure: A meta-analysis of randomized controlled trials. Nutrition. 2008, 24 (10): 933-940.
81.
go back to reference Pal S, Ellis V: Acute effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight postmenopausal women. Br J Nutr. 2011, 105 (10): 1512-1519. Pal S, Ellis V: Acute effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight postmenopausal women. Br J Nutr. 2011, 105 (10): 1512-1519.
82.
go back to reference Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P: Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation. 2004, 110 (12): 1564-1571. Ghanim H, Aljada A, Hofmeyer D, Syed T, Mohanty P, Dandona P: Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation. 2004, 110 (12): 1564-1571.
83.
go back to reference Otani H, Hata I: Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J Dairy Res. 1995, 62 (2): 339-348. Otani H, Hata I: Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J Dairy Res. 1995, 62 (2): 339-348.
84.
go back to reference Eriksen EK, Vegarud GE, Langsrud T, Almaas H, Lea T: Effect of milk proteins and their hydrolysates on in vitro immune responses. Small Rumin Res. 2008, 79 (1): 29-37. Eriksen EK, Vegarud GE, Langsrud T, Almaas H, Lea T: Effect of milk proteins and their hydrolysates on in vitro immune responses. Small Rumin Res. 2008, 79 (1): 29-37.
85.
go back to reference Wong CW, Seow HF, Husband AJ, Regester GO, Watson DL: Effects of purified bovine whey factors on cellular immune functions in ruminants. Vet Immunol Immunopathol. 1997, 56 (1–2): 85-96. Wong CW, Seow HF, Husband AJ, Regester GO, Watson DL: Effects of purified bovine whey factors on cellular immune functions in ruminants. Vet Immunol Immunopathol. 1997, 56 (1–2): 85-96.
86.
go back to reference Holmer-Jensen J, Karhu T, Mortensen LS, Pedersen SB, Herzig K-H, Hermansen K: Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects. Nutr J. 2011, 10: 115. Holmer-Jensen J, Karhu T, Mortensen LS, Pedersen SB, Herzig K-H, Hermansen K: Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects. Nutr J. 2011, 10: 115.
87.
go back to reference Perrone F, Da-Silva-Filho AC, Adôrno IF, Anabuki NT, Leal FS, Colombo T: Effects of preoperative feeding with a whey protein plus carbohydrate drink on the acute phase response and insulin resistance. A randomized trial. Nutr J. 2011, 10: 66. Perrone F, Da-Silva-Filho AC, Adôrno IF, Anabuki NT, Leal FS, Colombo T: Effects of preoperative feeding with a whey protein plus carbohydrate drink on the acute phase response and insulin resistance. A randomized trial. Nutr J. 2011, 10: 66.
88.
go back to reference Sugawara K, Takahashi H, Kashiwagura T, Yamada K, Yanagida S, Homma M: Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir Med. 2012, 106 (11): 1526-1534. Sugawara K, Takahashi H, Kashiwagura T, Yamada K, Yanagida S, Homma M: Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir Med. 2012, 106 (11): 1526-1534.
89.
go back to reference Barkeling B, Rössner S, Björvell H: Effects of a high-protein meal (meat) and a high-carbohydrate meal (vegetarian) on satiety measured by automated computerized monitoring of subsequent food intake, motivation to eat and food preferences. Int J Obes. 1990, 14 (9): 743-751. Barkeling B, Rössner S, Björvell H: Effects of a high-protein meal (meat) and a high-carbohydrate meal (vegetarian) on satiety measured by automated computerized monitoring of subsequent food intake, motivation to eat and food preferences. Int J Obes. 1990, 14 (9): 743-751.
90.
go back to reference Porrini M, Crovetti R, Testolin G, Silva S: Evaluation of satiety sensations and food intake after different preloads. Appetite. 1995, 25 (1): 17-30. Porrini M, Crovetti R, Testolin G, Silva S: Evaluation of satiety sensations and food intake after different preloads. Appetite. 1995, 25 (1): 17-30.
91.
go back to reference Poppitt SD, McCormack D, Buffenstein R: Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiol Behav. 1998, 64 (3): 279-285. Poppitt SD, McCormack D, Buffenstein R: Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiol Behav. 1998, 64 (3): 279-285.
92.
go back to reference Anderson GH, Moore SE: Dietary proteins in the regulation of food intake and body weight in humans. J Nutr. 2004, 134 (4): 974S-979S. Anderson GH, Moore SE: Dietary proteins in the regulation of food intake and body weight in humans. J Nutr. 2004, 134 (4): 974S-979S.
93.
go back to reference Halton TL, Hu FB: The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004, 23 (5): 373-385. Halton TL, Hu FB: The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004, 23 (5): 373-385.
94.
go back to reference Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR: A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005, 82 (1): 41-48. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR: A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005, 82 (1): 41-48.
95.
go back to reference Bowen J, Noakes M, Clifton PM: Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metab. 2006, 91 (8): 2913-2919. Bowen J, Noakes M, Clifton PM: Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metab. 2006, 91 (8): 2913-2919.
96.
go back to reference Blom WAM, Lluch A, Stafleu A, Vinoy S, Holst JJ, Schaafsma G: Effect of a high-protein breakfast on the postprandial ghrelin response. Am J Clin Nutr. 2006, 83 (2): 211-220. Blom WAM, Lluch A, Stafleu A, Vinoy S, Holst JJ, Schaafsma G: Effect of a high-protein breakfast on the postprandial ghrelin response. Am J Clin Nutr. 2006, 83 (2): 211-220.
97.
go back to reference Bowen J, Noakes M, Clifton PM: Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond). 2007, 31 (11): 1696-1703. Bowen J, Noakes M, Clifton PM: Appetite hormones and energy intake in obese men after consumption of fructose, glucose and whey protein beverages. Int J Obes (Lond). 2007, 31 (11): 1696-1703.
98.
go back to reference Aldrich ND, Reicks MM, Sibley SD, Redmon JB, Thomas W, Raatz SK: Varying protein source and quantity do not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults. Nutr Res. 2011, 31 (2): 104-112. Aldrich ND, Reicks MM, Sibley SD, Redmon JB, Thomas W, Raatz SK: Varying protein source and quantity do not significantly improve weight loss, fat loss, or satiety in reduced energy diets among midlife adults. Nutr Res. 2011, 31 (2): 104-112.
99.
go back to reference Penhoat A, Mutel E, Amigo-Correig M, Pillot B, Stefanutti A, Rajas F: Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav. 2011, 105 (1): 89-93. Penhoat A, Mutel E, Amigo-Correig M, Pillot B, Stefanutti A, Rajas F: Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav. 2011, 105 (1): 89-93.
100.
go back to reference Clifton PM, Keogh JB, Noakes M: Long-term effects of a high-protein weight-loss diet. Am J Clin Nutr. 2008, 87 (1): 23-29. Clifton PM, Keogh JB, Noakes M: Long-term effects of a high-protein weight-loss diet. Am J Clin Nutr. 2008, 87 (1): 23-29.
101.
go back to reference Kushner RF, Doerfler B: Low-carbohydrate, high-protein diets revisited. Curr Opin Gastroenterol. 2008, 24 (2): 198-203. Kushner RF, Doerfler B: Low-carbohydrate, high-protein diets revisited. Curr Opin Gastroenterol. 2008, 24 (2): 198-203.
102.
go back to reference Noakes M: The role of protein in weight management. Asia Pac J Clin Nutr. 2008, 17 (Suppl 1): 169-171. Noakes M: The role of protein in weight management. Asia Pac J Clin Nutr. 2008, 17 (Suppl 1): 169-171.
103.
go back to reference Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M: Protein, weight management, and satiety. Am J Clin Nutr. 2008, 87 (5): 1558S-1561S. Paddon-Jones D, Westman E, Mattes RD, Wolfe RR, Astrup A, Westerterp-Plantenga M: Protein, weight management, and satiety. Am J Clin Nutr. 2008, 87 (5): 1558S-1561S.
104.
go back to reference Gilbert J-A, Bendsen NT, Tremblay A, Astrup A: Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 2011, 21 (Suppl 2): B16-B31. Gilbert J-A, Bendsen NT, Tremblay A, Astrup A: Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 2011, 21 (Suppl 2): B16-B31.
105.
go back to reference Larsen TM, Dalskov S-M, Van Baak M, Jebb SA, Papadaki A, Pfeiffer AFH: Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010, 363 (22): 2102-2113. Larsen TM, Dalskov S-M, Van Baak M, Jebb SA, Papadaki A, Pfeiffer AFH: Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010, 363 (22): 2102-2113.
106.
go back to reference Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM: Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011, 141 (9): 1626-1634. Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM: Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr. 2011, 141 (9): 1626-1634.
107.
go back to reference Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Van Vught AJAH, Westerterp KR, Engelen MPKJ: Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav. 2009, 96 (4–5): 675-682. Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Van Vught AJAH, Westerterp KR, Engelen MPKJ: Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav. 2009, 96 (4–5): 675-682.
108.
go back to reference Baer DJ, Stote KS, Paul DR, Harris GK, Rumpler WV, Clevidence BA: Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr. 2011, 141 (8): 1489-1494. Baer DJ, Stote KS, Paul DR, Harris GK, Rumpler WV, Clevidence BA: Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr. 2011, 141 (8): 1489-1494.
109.
go back to reference Anderson GH, Tecimer SN, Shah D, Zafar TA: Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr. 2004, 134 (11): 3011-3015. Anderson GH, Tecimer SN, Shah D, Zafar TA: Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr. 2004, 134 (11): 3011-3015.
110.
go back to reference Lorenzen J, Frederiksen R, Hoppe C, Hvid R, Astrup A: The effect of milk proteins on appetite regulation and diet-induced thermogenesis. Eur J Clin Nutr. 2012, 66 (5): 622-627. Lorenzen J, Frederiksen R, Hoppe C, Hvid R, Astrup A: The effect of milk proteins on appetite regulation and diet-induced thermogenesis. Eur J Clin Nutr. 2012, 66 (5): 622-627.
111.
go back to reference Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MPKJ, Brummer R-JM: A breakfast with alpha-lactalbumin, gelatin, or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Clin Nutr. 2009, 28 (2): 147-155. Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MPKJ, Brummer R-JM: A breakfast with alpha-lactalbumin, gelatin, or gelatin + TRP lowers energy intake at lunch compared with a breakfast with casein, soy, whey, or whey-GMP. Clin Nutr. 2009, 28 (2): 147-155.
112.
go back to reference Keogh JB, Woonton BW, Taylor CM, Janakievski F, Desilva K, Clifton PM: Effect of glycomacropeptide fractions on cholecystokinin and food intake. Br J Nutr. 2010, 104 (2): 286-290. Keogh JB, Woonton BW, Taylor CM, Janakievski F, Desilva K, Clifton PM: Effect of glycomacropeptide fractions on cholecystokinin and food intake. Br J Nutr. 2010, 104 (2): 286-290.
113.
go back to reference Poppitt S, Strik C, McArdle B, McGill A, Hall R: Evidence of enhanced serum amino acid profile but not appetite suppression by dietary glycomacropeptide (GMP): a comparison of dairy whey proteins. J Am Coll Nutr. in press Poppitt S, Strik C, McArdle B, McGill A, Hall R: Evidence of enhanced serum amino acid profile but not appetite suppression by dietary glycomacropeptide (GMP): a comparison of dairy whey proteins. J Am Coll Nutr. in press
114.
go back to reference De Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ: Biomarkers of satiation and satiety. Am J Clin Nutr. 2004, 79 (6): 946-961. De Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ: Biomarkers of satiation and satiety. Am J Clin Nutr. 2004, 79 (6): 946-961.
115.
go back to reference Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH: Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008, 149 (1–3): 70-78. Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH: Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008, 149 (1–3): 70-78.
116.
go back to reference Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tomé D: Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev. 2012, 25 (1): 29-39. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tomé D: Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev. 2012, 25 (1): 29-39.
117.
go back to reference Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MPKJ, Brummer R-JM: Effects of complete whey-protein breakfasts versus whey without GMP-breakfasts on energy intake and satiety. Appetite. 2009, 52 (2): 388-395. Veldhorst MAB, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MPKJ, Brummer R-JM: Effects of complete whey-protein breakfasts versus whey without GMP-breakfasts on energy intake and satiety. Appetite. 2009, 52 (2): 388-395.
118.
go back to reference Mars M, Stafleu A, De Graaf C: Use of satiety peptides in assessing the satiating capacity of foods. Physiol Behav. 2012, 105 (2): 483-488. Mars M, Stafleu A, De Graaf C: Use of satiety peptides in assessing the satiating capacity of foods. Physiol Behav. 2012, 105 (2): 483-488.
119.
go back to reference Phillips SM, Tang JE, Moore DR: The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009, 28 (4): 343-354. Phillips SM, Tang JE, Moore DR: The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009, 28 (4): 343-354.
120.
go back to reference Van Loon LJC: Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr Metab Care. 2012, 15 (1): 71-77. Van Loon LJC: Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr Metab Care. 2012, 15 (1): 71-77.
121.
go back to reference Frestedt J, Zenk J, Kuskowski M, Ward L, Bastian E: A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr Metab (Lond). 2008, 5 (1): 8. Frestedt J, Zenk J, Kuskowski M, Ward L, Bastian E: A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr Metab (Lond). 2008, 5 (1): 8.
122.
go back to reference Treyzon L, Chen S, Hong K, Yan E, Carpenter CL, Thames G: A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass. Nutr J. 2008, 7: 23. Treyzon L, Chen S, Hong K, Yan E, Carpenter CL, Thames G: A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass. Nutr J. 2008, 7: 23.
123.
go back to reference Coker RH, Miller S, Schutzler S, Deutz N, Wolfe RR: Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr J. 2012, 11: 105. Coker RH, Miller S, Schutzler S, Deutz N, Wolfe RR: Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr J. 2012, 11: 105.
124.
go back to reference Adechian S, Balage M, Remond D, Migné C, Quignard-Boulangé A, Marset-Baglieri A: Protein feeding pattern, casein feeding, or milk-soluble protein feeding did not change the evolution of body composition during a short-term weight loss program. Am J Physiol Endocrinol Metab. 2012, 303 (8): E973-E982. Adechian S, Balage M, Remond D, Migné C, Quignard-Boulangé A, Marset-Baglieri A: Protein feeding pattern, casein feeding, or milk-soluble protein feeding did not change the evolution of body composition during a short-term weight loss program. Am J Physiol Endocrinol Metab. 2012, 303 (8): E973-E982.
125.
go back to reference Claessens M, Van Baak MA, Monsheimer S, Saris WHM: The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int J Obes (Lond). 2009, 33 (3): 296-304. Claessens M, Van Baak MA, Monsheimer S, Saris WHM: The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int J Obes (Lond). 2009, 33 (3): 296-304.
126.
go back to reference Atherton PJ, Smith K: Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012, 590 (5): 1049-1057. Atherton PJ, Smith K: Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012, 590 (5): 1049-1057.
127.
go back to reference Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR: The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000, 85 (12): 4481-4490. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR: The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000, 85 (12): 4481-4490.
128.
go back to reference Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF: Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 2011, 25 (9): 3240-3249. Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF: Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 2011, 25 (9): 3240-3249.
129.
go back to reference Lacroix M, Bos C, Léonil J, Airinei G, Luengo C, Daré S: Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am J Clin Nutr. 2006, 84 (5): 1070-1079. Lacroix M, Bos C, Léonil J, Airinei G, Luengo C, Daré S: Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am J Clin Nutr. 2006, 84 (5): 1070-1079.
130.
go back to reference Soop M, Nehra V, Henderson GC, Boirie Y, Ford GC, Nair KS: Coingestion of whey protein and casein in a mixed meal: demonstration of a more sustained anabolic effect of casein. Am J Physiol Endocrinol Metab. 2012, 303 (1): E152-E162. Soop M, Nehra V, Henderson GC, Boirie Y, Ford GC, Nair KS: Coingestion of whey protein and casein in a mixed meal: demonstration of a more sustained anabolic effect of casein. Am J Physiol Endocrinol Metab. 2012, 303 (1): E152-E162.
131.
go back to reference Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36 (12): 2073-2081. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36 (12): 2073-2081.
132.
go back to reference Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM: Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009, 107 (3): 987-992. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM: Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009, 107 (3): 987-992.
133.
go back to reference Sheikholeslami Vatani D, Ahmadi Kani Golzar F: Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training. Appetite. 2012, 59 (3): 673-678. Sheikholeslami Vatani D, Ahmadi Kani Golzar F: Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training. Appetite. 2012, 59 (3): 673-678.
134.
go back to reference Hawley JA, Burke LM, Phillips SM, Spriet LL: Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011, 110 (3): 834-845. Hawley JA, Burke LM, Phillips SM, Spriet LL: Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011, 110 (3): 834-845.
135.
go back to reference Mojtahedi MC, Thorpe MP, Karampinos DC, Johnson CL, Layman DK, Georgiadis JG: The effects of a higher protein intake during energy restriction on changes in body composition and physical function in older women. J Gerontol A Biol Sci Med Sci. 2011, 66 (11): 1218-1225. Mojtahedi MC, Thorpe MP, Karampinos DC, Johnson CL, Layman DK, Georgiadis JG: The effects of a higher protein intake during energy restriction on changes in body composition and physical function in older women. J Gerontol A Biol Sci Med Sci. 2011, 66 (11): 1218-1225.
136.
go back to reference Cribb PJ, Williams AD, Carey MF, Hayes A: The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006, 16 (5): 494-509. Cribb PJ, Williams AD, Carey MF, Hayes A: The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006, 16 (5): 494-509.
137.
go back to reference Candow DG, Burke NC, Smith-Palmer T, Burke DG: Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. 2006, 16 (3): 233-244. Candow DG, Burke NC, Smith-Palmer T, Burke DG: Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab. 2006, 16 (3): 233-244.
138.
go back to reference Cermak NM, De Groot LC, Van Loon LJC: Perspective: protein supplementation during prolonged resistance type exercise training augments skeletal muscle mass and strength gains. J Am Med Dir Assoc. 2013, 14 (1): 71-72. Cermak NM, De Groot LC, Van Loon LJC: Perspective: protein supplementation during prolonged resistance type exercise training augments skeletal muscle mass and strength gains. J Am Med Dir Assoc. 2013, 14 (1): 71-72.
139.
go back to reference Verdijk LB, Jonkers RAM, Gleeson BG, Beelen M, Meijer K, Savelberg HHCM: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009, 89 (2): 608-616. Verdijk LB, Jonkers RAM, Gleeson BG, Beelen M, Meijer K, Savelberg HHCM: Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am J Clin Nutr. 2009, 89 (2): 608-616.
Metadata
Title
Milk protein for improved metabolic health: a review of the evidence
Authors
Robin A McGregor
Sally D Poppitt
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Nutrition & Metabolism / Issue 1/2013
Electronic ISSN: 1743-7075
DOI
https://doi.org/10.1186/1743-7075-10-46

Other articles of this Issue 1/2013

Nutrition & Metabolism 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine