Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2008

Open Access 01-12-2008 | Commentary

Midazolam, hippocampal function, and transitive inference: Reply to Greene

Authors: Michael J Frank, Randall C O'Reilly, Tim Curran

Published in: Behavioral and Brain Functions | Issue 1/2008

Login to get access

Abstract

The transitive inference (TI) task assesses the ability to generalize learned knowledge to new contexts, and is thought to depend on the hippocampus (Dusek & Eichenbaum, 1997). Animals or humans learn in separate trials to choose stimulus A over B, B over C, C over D and D over E, via reinforcement feedback. Transitive responding based on the hierarchical structure A > B > C > D > E is then tested with the novel BD pair. We and others have argued that successful BD performance by animals – and even humans in some implicit studies – can be explained by simple reinforcement learning processes which do not depend critically on the hippocampus, but rather on the striatal dopamine system. We recently showed that the benzodiazepene midazolam, which is thought to disrupt hippocampal function, profoundly impaired human memory recall performance but actually enhanced implicit TI performance (Frank, O'Reilly & Curran, 2006). We posited that midazolam biased participants to recruit striatum during learning due to dysfunctional hippocampal processing, and that this change actually supported generalization of reinforcement values. Greene (2007) questions the validity of our pharmacological assumptions and argues that our conclusions are unfounded. Here we stand by our original hypothesis, which remains the most parsimonious account of the data, and is grounded by multiple lines of evidence.
Literature
1.
go back to reference Frank MJ, Rudy JW, Levy WB, O'Reilly RC: When Logic Fails: Implicit Transitive Inference in Humans. Mem Cognit. 2005, 33: 742-50.CrossRefPubMed Frank MJ, Rudy JW, Levy WB, O'Reilly RC: When Logic Fails: Implicit Transitive Inference in Humans. Mem Cognit. 2005, 33: 742-50.CrossRefPubMed
2.
go back to reference von Fersen L, Wynne CDL, Delius JD, Staddon JER: Transitive inference in pigeons. J Exp Psychol Anim Behav Proc. 1991, 17: 334-341. 10.1037/0097-7403.17.3.334.CrossRef von Fersen L, Wynne CDL, Delius JD, Staddon JER: Transitive inference in pigeons. J Exp Psychol Anim Behav Proc. 1991, 17: 334-341. 10.1037/0097-7403.17.3.334.CrossRef
3.
go back to reference Wynne CD: A minimal model of transitive inference. Models of Action. Edited by: Wynne CD, Staddon JE. 1998, New Jersey: Lawrence Erlbaum Associates, 269-307. Wynne CD: A minimal model of transitive inference. Models of Action. Edited by: Wynne CD, Staddon JE. 1998, New Jersey: Lawrence Erlbaum Associates, 269-307.
4.
go back to reference Frank MJ, Rudy JW, O'Reilly RC: Transitivity, flexibility, conjunctive representations and the hippocampus: II. A Computational analysis. Hippocampus. 2003, 13: 341-54. 10.1002/hipo.10084.CrossRefPubMed Frank MJ, Rudy JW, O'Reilly RC: Transitivity, flexibility, conjunctive representations and the hippocampus: II. A Computational analysis. Hippocampus. 2003, 13: 341-54. 10.1002/hipo.10084.CrossRefPubMed
5.
go back to reference Siemann M, Delius JD: Algebraic learning and neural network models for transitive and non-transitive responding. Eur J Cogn Psychol. 1998, 10: 307-334. 10.1080/713752279.CrossRef Siemann M, Delius JD: Algebraic learning and neural network models for transitive and non-transitive responding. Eur J Cogn Psychol. 1998, 10: 307-334. 10.1080/713752279.CrossRef
6.
go back to reference Frank MJ: Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cogn Neurosci. 2005, 17: 51-72. 10.1162/0898929052880093.CrossRefPubMed Frank MJ: Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cogn Neurosci. 2005, 17: 51-72. 10.1162/0898929052880093.CrossRefPubMed
7.
go back to reference Frank MJ, Seeberger LC, O'Reilly RC: By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science. 2004, 306: 1940-3. 10.1126/science.1102941.CrossRefPubMed Frank MJ, Seeberger LC, O'Reilly RC: By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science. 2004, 306: 1940-3. 10.1126/science.1102941.CrossRefPubMed
8.
go back to reference Poldrack RA, Packard MG: Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia. 2003, 41: 245-251. 10.1016/S0028-3932(02)00157-4.CrossRefPubMed Poldrack RA, Packard MG: Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia. 2003, 41: 245-251. 10.1016/S0028-3932(02)00157-4.CrossRefPubMed
9.
go back to reference Atallah HE, Frank MJ, O'Reilly RC: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems. Neurobiol Learn Mem. 2004, 82 (3): 253-267. 10.1016/j.nlm.2004.06.004.CrossRefPubMed Atallah HE, Frank MJ, O'Reilly RC: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems. Neurobiol Learn Mem. 2004, 82 (3): 253-267. 10.1016/j.nlm.2004.06.004.CrossRefPubMed
10.
go back to reference Rovira C, Ben-Ari Y: Developmental study of benzodiazepene effects on monosynaptic GABAA-mediated IPSPs of rat hippocampal neurons. J Neurophysiol. 1993, 70 (3): 1076-1085.PubMed Rovira C, Ben-Ari Y: Developmental study of benzodiazepene effects on monosynaptic GABAA-mediated IPSPs of rat hippocampal neurons. J Neurophysiol. 1993, 70 (3): 1076-1085.PubMed
11.
go back to reference Poncer JC, Durr R, Gahwiler BH, Thompson SM: Modulation of synaptic GABAA receptor function by benzodiazepenes in area CA3 of rat hippocampal slice cultures. Neuropharmacology. 1996, 35: 1169-79. 10.1016/S0028-3908(96)00055-X.CrossRefPubMed Poncer JC, Durr R, Gahwiler BH, Thompson SM: Modulation of synaptic GABAA receptor function by benzodiazepenes in area CA3 of rat hippocampal slice cultures. Neuropharmacology. 1996, 35: 1169-79. 10.1016/S0028-3908(96)00055-X.CrossRefPubMed
12.
go back to reference Kristiansen U, Lambert JD: Benzodiazepene and barbituate ligands modulate responses of cultured hippocampal neurones to the GABAA receptor partial agonist, 4-PIOL. Neuropharmacology. 1996, 35: 1181-91. 10.1016/S0028-3908(96)00070-6.CrossRefPubMed Kristiansen U, Lambert JD: Benzodiazepene and barbituate ligands modulate responses of cultured hippocampal neurones to the GABAA receptor partial agonist, 4-PIOL. Neuropharmacology. 1996, 35: 1181-91. 10.1016/S0028-3908(96)00070-6.CrossRefPubMed
13.
go back to reference Kobayashi S, Fujito Y, Matsuyama K, Aoki M: Differential effects of midazolam on inhibitory postsynaptic currents in CA1 pyramidal cells and dentate gyrus granule cells of rat hippocampal slices. Brain Res. 2004, 1003: 176-82. 10.1016/j.brainres.2004.01.015.CrossRefPubMed Kobayashi S, Fujito Y, Matsuyama K, Aoki M: Differential effects of midazolam on inhibitory postsynaptic currents in CA1 pyramidal cells and dentate gyrus granule cells of rat hippocampal slices. Brain Res. 2004, 1003: 176-82. 10.1016/j.brainres.2004.01.015.CrossRefPubMed
14.
go back to reference Imperato A, Dazzi L, Obinu MC, Gessa GL, Biggio G: Inhibition of hippocampal acetylcholine release by benzodiazepines: antagonism by flumazenil. Eur J Pharmacol. 1993, 238: 135-137. 10.1016/0014-2999(93)90518-M.CrossRefPubMed Imperato A, Dazzi L, Obinu MC, Gessa GL, Biggio G: Inhibition of hippocampal acetylcholine release by benzodiazepines: antagonism by flumazenil. Eur J Pharmacol. 1993, 238: 135-137. 10.1016/0014-2999(93)90518-M.CrossRefPubMed
15.
go back to reference Reinsel RA, Veselis RA, Dnistrian AM, Feshchenko VA, Beattle BJ, Duff MR: Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. Int J Neuropsychopharmacol. 2000, 3: 117-27. 10.1017/S1461145700001814.CrossRefPubMed Reinsel RA, Veselis RA, Dnistrian AM, Feshchenko VA, Beattle BJ, Duff MR: Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. Int J Neuropsychopharmacol. 2000, 3: 117-27. 10.1017/S1461145700001814.CrossRefPubMed
16.
go back to reference Merritt P, Hirshman E, Zamani S, Hsu J, Berrigan M: Episodic representations support early semantic learning: evidence from midazolam induced amnesia. Brain Cogn. 2006, 61 (2): 219-223. 10.1016/j.bandc.2005.12.001.CrossRefPubMed Merritt P, Hirshman E, Zamani S, Hsu J, Berrigan M: Episodic representations support early semantic learning: evidence from midazolam induced amnesia. Brain Cogn. 2006, 61 (2): 219-223. 10.1016/j.bandc.2005.12.001.CrossRefPubMed
17.
go back to reference Malmberg KJ, Zeelenberg R, Shiffrin RM: Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. J Exp Psychol Learn Mem Cogn. 2004, 30 (2): 540-549. 10.1037/0278-7393.30.2.540.CrossRefPubMed Malmberg KJ, Zeelenberg R, Shiffrin RM: Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. J Exp Psychol Learn Mem Cogn. 2004, 30 (2): 540-549. 10.1037/0278-7393.30.2.540.CrossRefPubMed
18.
go back to reference Evans MS, Viola-McCabe KE: Midazolam inhibits long-term potentiation through modulation of GABA-A receptors. Neuropharmacology. 1996, 35: 347-57. 10.1016/0028-3908(95)00182-4.CrossRefPubMed Evans MS, Viola-McCabe KE: Midazolam inhibits long-term potentiation through modulation of GABA-A receptors. Neuropharmacology. 1996, 35: 347-57. 10.1016/0028-3908(95)00182-4.CrossRefPubMed
19.
go back to reference Frank MJ, OReilly RC, Curran T: When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychol Sci. 2006, 17: 700-707. 10.1111/j.1467-9280.2006.01769.x.CrossRefPubMed Frank MJ, OReilly RC, Curran T: When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychol Sci. 2006, 17: 700-707. 10.1111/j.1467-9280.2006.01769.x.CrossRefPubMed
20.
go back to reference Poldrack RA, Clark J, PareBlagoev EJ, Shohamy D, Moyano JC, Myers C, Gluck MA: Interactive memory systems in the human brain. Nature. 2001, 414: 546-549. 10.1038/35107080.CrossRefPubMed Poldrack RA, Clark J, PareBlagoev EJ, Shohamy D, Moyano JC, Myers C, Gluck MA: Interactive memory systems in the human brain. Nature. 2001, 414: 546-549. 10.1038/35107080.CrossRefPubMed
21.
go back to reference Shohamy D, Myers CE, Kalanithi J, Gluck MA: Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci Biobehav Rev. 2007 Shohamy D, Myers CE, Kalanithi J, Gluck MA: Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci Biobehav Rev. 2007
22.
go back to reference Greene AJ: Implicit transitive inference and the human hippocampus: does intravenous midazolam function as a reversible hippocampal lesion?. Behav Brain Funct. 2007, 3: 51-10.1186/1744-9081-3-51.PubMedCentralCrossRefPubMed Greene AJ: Implicit transitive inference and the human hippocampus: does intravenous midazolam function as a reversible hippocampal lesion?. Behav Brain Funct. 2007, 3: 51-10.1186/1744-9081-3-51.PubMedCentralCrossRefPubMed
23.
go back to reference Nagode JC, Pardo JV: Human hippocampal activation during transitive inference. Neuroreport. 2002, 13: 939-944. 10.1097/00001756-200205240-00008.CrossRefPubMed Nagode JC, Pardo JV: Human hippocampal activation during transitive inference. Neuroreport. 2002, 13: 939-944. 10.1097/00001756-200205240-00008.CrossRefPubMed
24.
go back to reference Acuna BD, Eliassen JC, Donoghue JP, Sanes JN: Frontal and Parietal Lobe Activation during Transitive Inference in Humans. Cereb Cortex. 2002, 12: 1312-1321. 10.1093/cercor/12.12.1312.CrossRefPubMed Acuna BD, Eliassen JC, Donoghue JP, Sanes JN: Frontal and Parietal Lobe Activation during Transitive Inference in Humans. Cereb Cortex. 2002, 12: 1312-1321. 10.1093/cercor/12.12.1312.CrossRefPubMed
25.
go back to reference Gerfen CR, Wilson C: The basal ganglia. Handbook of chemical neuroanatomy. Integrated systems of the CNS. Edited by: Swanson L, Bjorkland A, Hokfelt T. 1996, Amsterdam: Elsevier, 12: 371-468. Gerfen CR, Wilson C: The basal ganglia. Handbook of chemical neuroanatomy. Integrated systems of the CNS. Edited by: Swanson L, Bjorkland A, Hokfelt T. 1996, Amsterdam: Elsevier, 12: 371-468.
26.
go back to reference Rattan AK, Tejwani GA: Effect of chronic treatment with morphine, midazolam and both together on dynorphin(1–13) levels in the rat. Brain Res. 1997, 754 (1–2): 239-244. 10.1016/S0006-8993(97)00084-X.CrossRefPubMed Rattan AK, Tejwani GA: Effect of chronic treatment with morphine, midazolam and both together on dynorphin(1–13) levels in the rat. Brain Res. 1997, 754 (1–2): 239-244. 10.1016/S0006-8993(97)00084-X.CrossRefPubMed
27.
go back to reference Tejwani GA, Rattan AK: Met-enkephalin alteration in the rat during chronic injection of morphine and/or midazolam. Brain Res. 1997, 775 (1–2): 119-126. 10.1016/S0006-8993(97)00875-5.CrossRefPubMed Tejwani GA, Rattan AK: Met-enkephalin alteration in the rat during chronic injection of morphine and/or midazolam. Brain Res. 1997, 775 (1–2): 119-126. 10.1016/S0006-8993(97)00875-5.CrossRefPubMed
28.
go back to reference Gil E, Colado I, Lopez F, Fernandez-Briera A, Fernandez-Lopez A, Calvo P: Effects of chronic treatment with ethanol and withdrawal of ethanol on levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the striatum of the rat. Influence of benzodiazepines, barbiturate and somatostatin. Neuropharmacology. 1992, 31 (11): 1151-1156. 10.1016/0028-3908(92)90011-D.CrossRefPubMed Gil E, Colado I, Lopez F, Fernandez-Briera A, Fernandez-Lopez A, Calvo P: Effects of chronic treatment with ethanol and withdrawal of ethanol on levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the striatum of the rat. Influence of benzodiazepines, barbiturate and somatostatin. Neuropharmacology. 1992, 31 (11): 1151-1156. 10.1016/0028-3908(92)90011-D.CrossRefPubMed
29.
go back to reference Foerde K, Knowlton BJ, Poldrack RA: Modulation of competing memory systems by distraction. Proc Natl Acad Sci USA. 2006, 103 (31): 11778-11783. 10.1073/pnas.0602659103.PubMedCentralCrossRefPubMed Foerde K, Knowlton BJ, Poldrack RA: Modulation of competing memory systems by distraction. Proc Natl Acad Sci USA. 2006, 103 (31): 11778-11783. 10.1073/pnas.0602659103.PubMedCentralCrossRefPubMed
30.
go back to reference Montpied P, Martin BM, Cottingham SL, Stubblefield BK, Ginns EI, Paul SM: Regional distribution of the GABAA/benzodiazepene receptor (alpha subunit) mRNA in rat brain. J Neurochem. 1988, 51: 1651-4. 10.1111/j.1471-4159.1988.tb01137.x.CrossRefPubMed Montpied P, Martin BM, Cottingham SL, Stubblefield BK, Ginns EI, Paul SM: Regional distribution of the GABAA/benzodiazepene receptor (alpha subunit) mRNA in rat brain. J Neurochem. 1988, 51: 1651-4. 10.1111/j.1471-4159.1988.tb01137.x.CrossRefPubMed
31.
go back to reference Curran T, DeBuse C, Woroch B, Hirshman E: Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci. 2006, 26 (7): 1979-1985. 10.1523/JNEUROSCI.5370-05.2006.CrossRefPubMed Curran T, DeBuse C, Woroch B, Hirshman E: Combined pharmacological and electrophysiological dissociation of familiarity and recollection. J Neurosci. 2006, 26 (7): 1979-1985. 10.1523/JNEUROSCI.5370-05.2006.CrossRefPubMed
32.
33.
go back to reference Driscoll I, Sutherland RJ, Prusky GT, Rudy JW: Damage to the Hippocampal Formation Does Not Disrupt Representational Flexibility as Measured by a Novelty Transfer Test. Behav Neurosci. 2004, 118 (6): 1427-1432. 10.1037/0735-7044.118.6.1427.CrossRefPubMed Driscoll I, Sutherland RJ, Prusky GT, Rudy JW: Damage to the Hippocampal Formation Does Not Disrupt Representational Flexibility as Measured by a Novelty Transfer Test. Behav Neurosci. 2004, 118 (6): 1427-1432. 10.1037/0735-7044.118.6.1427.CrossRefPubMed
34.
go back to reference Bayley PJ, Frascino JC, Squire LR: Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature. 2005, 436: 550-3. 10.1038/nature03857.PubMedCentralCrossRefPubMed Bayley PJ, Frascino JC, Squire LR: Robust habit learning in the absence of awareness and independent of the medial temporal lobe. Nature. 2005, 436: 550-3. 10.1038/nature03857.PubMedCentralCrossRefPubMed
35.
go back to reference Hirshman E, Passannante A, Arndt J: Midazolam Amnesia and Conceptual Processing in Implicit Memory. J Exp Psychol Gen. 2001, 130: 453-465. 10.1037/0096-3445.130.3.453.CrossRefPubMed Hirshman E, Passannante A, Arndt J: Midazolam Amnesia and Conceptual Processing in Implicit Memory. J Exp Psychol Gen. 2001, 130: 453-465. 10.1037/0096-3445.130.3.453.CrossRefPubMed
36.
go back to reference Arndt J, Passannante A, Hirshman E: The effect of midazolam on implicit and explicit memory in category exemplar production and category cued recall. Memory. 2004, 12: 158-73. 10.1080/09658210244000270.CrossRefPubMed Arndt J, Passannante A, Hirshman E: The effect of midazolam on implicit and explicit memory in category exemplar production and category cued recall. Memory. 2004, 12: 158-73. 10.1080/09658210244000270.CrossRefPubMed
37.
go back to reference Thomas-Anterion C, Koenig O, Navez M, Laurent B: Midazolam effects on implicit and explicit memory processes in healthy subjects. Psychopharmacology. 1999, 145: 139-43. 10.1007/s002130051042.CrossRefPubMed Thomas-Anterion C, Koenig O, Navez M, Laurent B: Midazolam effects on implicit and explicit memory processes in healthy subjects. Psychopharmacology. 1999, 145: 139-43. 10.1007/s002130051042.CrossRefPubMed
38.
go back to reference Hirshman E, Fisher J, Henthorn T, Arndt J, Passannante A: Midazolam amnesia and dual-process models of the word-frequency mirror effect. J Mem Lang. 2002, 47: 499-516. 10.1016/S0749-596X(02)00017-7.CrossRef Hirshman E, Fisher J, Henthorn T, Arndt J, Passannante A: Midazolam amnesia and dual-process models of the word-frequency mirror effect. J Mem Lang. 2002, 47: 499-516. 10.1016/S0749-596X(02)00017-7.CrossRef
39.
go back to reference Park H, Quinlan J, Thornton E, Reder LM: The effect of midazolam on visual search: Implications for understanding amnesia. Proc Natl Acad Sci USA. 2004, 101: 17879-83. 10.1073/pnas.0408075101.PubMedCentralCrossRefPubMed Park H, Quinlan J, Thornton E, Reder LM: The effect of midazolam on visual search: Implications for understanding amnesia. Proc Natl Acad Sci USA. 2004, 101: 17879-83. 10.1073/pnas.0408075101.PubMedCentralCrossRefPubMed
40.
go back to reference Giovanello KS, Schnyer DM, Verfaeilie M: A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus. 2004, 14: 5-8. 10.1002/hipo.10182.CrossRefPubMed Giovanello KS, Schnyer DM, Verfaeilie M: A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus. 2004, 14: 5-8. 10.1002/hipo.10182.CrossRefPubMed
41.
go back to reference Greene AJ, Gross WL, Elsinger CL, Rao SM: An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci. 2006, 18 (7): 1156-1173. 10.1162/jocn.2006.18.7.1156.PubMedCentralCrossRefPubMed Greene AJ, Gross WL, Elsinger CL, Rao SM: An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci. 2006, 18 (7): 1156-1173. 10.1162/jocn.2006.18.7.1156.PubMedCentralCrossRefPubMed
Metadata
Title
Midazolam, hippocampal function, and transitive inference: Reply to Greene
Authors
Michael J Frank
Randall C O'Reilly
Tim Curran
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2008
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-4-5

Other articles of this Issue 1/2008

Behavioral and Brain Functions 1/2008 Go to the issue