Skip to main content
Top
Published in: BMC Immunology 1/2012

Open Access 01-12-2012 | Research article

Micrurus snake venoms activate human complement system and generate anaphylatoxins

Authors: Gabriela D Tanaka, Giselle Pidde-Queiroz, Maria de Fátima D Furtado, Carmen van den Berg, Denise V Tambourgi

Published in: BMC Immunology | Issue 1/2012

Login to get access

Abstract

Background

The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity.

Results

In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control.

Conclusion

Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vital Brazil O, Fontana MD, Pellegrini Filho A: Physiopathologie et therapeutique de l'envenomation experimentale causee par le venin de Micrurus frontalis. Mem Inst Butantan. 1976, 40: 221-240. Vital Brazil O, Fontana MD, Pellegrini Filho A: Physiopathologie et therapeutique de l'envenomation experimentale causee par le venin de Micrurus frontalis. Mem Inst Butantan. 1976, 40: 221-240.
2.
go back to reference Barros ACS, Fernandes DP, Ferreira LCL, Santos MC: Local effects induce by venoms from five species of genus Micrurus sp (coral snakes). Toxicon. 1994, 32: 445-452. 10.1016/0041-0101(94)90296-8.PubMedCrossRef Barros ACS, Fernandes DP, Ferreira LCL, Santos MC: Local effects induce by venoms from five species of genus Micrurus sp (coral snakes). Toxicon. 1994, 32: 445-452. 10.1016/0041-0101(94)90296-8.PubMedCrossRef
3.
go back to reference Gutiérrez JM, Lomonte B, Portilla E, Cerdas L, Rojas E: Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculation of venoms from five species. Toxicon. 1983, 21: 777-783. 10.1016/0041-0101(83)90066-1.PubMedCrossRef Gutiérrez JM, Lomonte B, Portilla E, Cerdas L, Rojas E: Local effects induced by coral snake venoms: evidence of myonecrosis after experimental inoculation of venoms from five species. Toxicon. 1983, 21: 777-783. 10.1016/0041-0101(83)90066-1.PubMedCrossRef
4.
go back to reference Tan NH, Ponnudurai G: The biologial properties of venoms of some american coral snake (genus Micrurus). Comp Biochem Physiol. 1992, 101B: 471-474. Tan NH, Ponnudurai G: The biologial properties of venoms of some american coral snake (genus Micrurus). Comp Biochem Physiol. 1992, 101B: 471-474.
5.
go back to reference Aird SD, Jorge da Silva N: Comparative enzymatic composition of Brazilian coral snake (Micrurus) venoms. Comp Biochem Physiol. 1991, 99B: 287-294. Aird SD, Jorge da Silva N: Comparative enzymatic composition of Brazilian coral snake (Micrurus) venoms. Comp Biochem Physiol. 1991, 99B: 287-294.
6.
go back to reference Tanaka GD, Furtado MDFD, Portaro FCV, Sant'Anna OA, Tambourgi DV: Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis. 2010, 4: e622-10.1371/journal.pntd.0000622.PubMedPubMedCentralCrossRef Tanaka GD, Furtado MDFD, Portaro FCV, Sant'Anna OA, Tambourgi DV: Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis. 2010, 4: e622-10.1371/journal.pntd.0000622.PubMedPubMedCentralCrossRef
7.
go back to reference Tambourgi DV, Santos MC, Furtado MF, Freitas MC, Silva WD, Kipnis TL: Pro-inflammatory activities in elapid snake venoms. Br J Pharmacol. 1994, 112: 723-727.PubMedPubMedCentralCrossRef Tambourgi DV, Santos MC, Furtado MF, Freitas MC, Silva WD, Kipnis TL: Pro-inflammatory activities in elapid snake venoms. Br J Pharmacol. 1994, 112: 723-727.PubMedPubMedCentralCrossRef
8.
go back to reference Köhl J: Self, non-self, and danger: a complementary view. Adv Exp Med Biol. 2006, 586: 71-94. 10.1007/0-387-34134-X_6.PubMedCrossRef Köhl J: Self, non-self, and danger: a complementary view. Adv Exp Med Biol. 2006, 586: 71-94. 10.1007/0-387-34134-X_6.PubMedCrossRef
9.
go back to reference Beinrohr L, Dobó J, Závodszky P, Gál P: C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med. 2008, 14: 511-521. 10.1016/j.molmed.2008.09.009.PubMedCrossRef Beinrohr L, Dobó J, Závodszky P, Gál P: C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med. 2008, 14: 511-521. 10.1016/j.molmed.2008.09.009.PubMedCrossRef
10.
go back to reference Unsworth DJ: Complement deficiency and disease. J Clin Pathol. 2008, 61: 1013-1017. 10.1136/jcp.2008.056317.PubMedCrossRef Unsworth DJ: Complement deficiency and disease. J Clin Pathol. 2008, 61: 1013-1017. 10.1136/jcp.2008.056317.PubMedCrossRef
11.
go back to reference Sjöberg AP, Trouw LA, Blom AM: Complement activation and inhibition: a delicate balance. Trends Immunol. 2009, 30: 83-90. 10.1016/j.it.2008.11.003.PubMedCrossRef Sjöberg AP, Trouw LA, Blom AM: Complement activation and inhibition: a delicate balance. Trends Immunol. 2009, 30: 83-90. 10.1016/j.it.2008.11.003.PubMedCrossRef
12.
go back to reference Bowen B, Hawk JJ, Sibunka S, Hovick S, Weiler JM: A review of the reported defects in the human C1 esterase inhibitor gene producing hereditary angioedema including four new mutations. Clin Immunol. 2001, 98: 157-163. 10.1006/clim.2000.4947.PubMedCrossRef Bowen B, Hawk JJ, Sibunka S, Hovick S, Weiler JM: A review of the reported defects in the human C1 esterase inhibitor gene producing hereditary angioedema including four new mutations. Clin Immunol. 2001, 98: 157-163. 10.1006/clim.2000.4947.PubMedCrossRef
13.
go back to reference Miwa T, Song WC: Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol. 2001, 1: 445-459. 10.1016/S1567-5769(00)00043-6.PubMedCrossRef Miwa T, Song WC: Membrane complement regulatory proteins: insight from animal studies and relevance to human diseases. Int Immunopharmacol. 2001, 1: 445-459. 10.1016/S1567-5769(00)00043-6.PubMedCrossRef
14.
go back to reference Müller-Eberhard HJ, Fjellstrom KE: Isolation of the anti-complementary protein from cobra venom and its mode of action on C3. J Immunol. 1971, 6: 1666-1672. Müller-Eberhard HJ, Fjellstrom KE: Isolation of the anti-complementary protein from cobra venom and its mode of action on C3. J Immunol. 1971, 6: 1666-1672.
15.
go back to reference Götze O, Müller-Eberhard HJ: The C3-activator system: an alternate pathway of complement-activation. J Exp Med. 1971, 3: 90-108. Götze O, Müller-Eberhard HJ: The C3-activator system: an alternate pathway of complement-activation. J Exp Med. 1971, 3: 90-108.
16.
go back to reference Vogel CW, Müller-Eberhard HJ: The cobra venom factor-dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate. J Biol Chem. 1982, 14: 8292-8299. Vogel CW, Müller-Eberhard HJ: The cobra venom factor-dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate. J Biol Chem. 1982, 14: 8292-8299.
17.
go back to reference Pidde-Queiroz G, Furtado MDFD, Filgueiras CF, Pessoa LA, Spadafora-Ferreira M, van den Berg CW, Tambourgi DV: Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus. Mol Immunol. 2010, 47: 2537-2544. 10.1016/j.molimm.2010.07.003.PubMedCrossRef Pidde-Queiroz G, Furtado MDFD, Filgueiras CF, Pessoa LA, Spadafora-Ferreira M, van den Berg CW, Tambourgi DV: Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus. Mol Immunol. 2010, 47: 2537-2544. 10.1016/j.molimm.2010.07.003.PubMedCrossRef
18.
go back to reference Zeller EA: Enzymes of snake venoms and their biological significance. Adv Enzymol. 1948, 8: 459-495. Zeller EA: Enzymes of snake venoms and their biological significance. Adv Enzymol. 1948, 8: 459-495.
19.
go back to reference Rocha-e-Silva M, Beraldo WT, Rosenfeld G: Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and trypsin. Am J Physiol. 1950, 156: 261-273. Rocha-e-Silva M, Beraldo WT, Rosenfeld G: Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and trypsin. Am J Physiol. 1950, 156: 261-273.
20.
go back to reference Stocker K, Barlow GH: The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol. 1976, 45: 214-223.PubMedCrossRef Stocker K, Barlow GH: The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol. 1976, 45: 214-223.PubMedCrossRef
21.
go back to reference Geiger R, Kortmann H: Esterolytic and proteolytic activities of snake venoms and their inhibition by proteinase inhibitors. Toxicon. 1977, 15: 257-259. 10.1016/0041-0101(77)90052-6.PubMedCrossRef Geiger R, Kortmann H: Esterolytic and proteolytic activities of snake venoms and their inhibition by proteinase inhibitors. Toxicon. 1977, 15: 257-259. 10.1016/0041-0101(77)90052-6.PubMedCrossRef
22.
go back to reference Stocker K, Fisher H, Meier J: Thrombin-like snake venom proteinases. Toxicon. 1982, 20: 265-273. 10.1016/0041-0101(82)90225-2.PubMedCrossRef Stocker K, Fisher H, Meier J: Thrombin-like snake venom proteinases. Toxicon. 1982, 20: 265-273. 10.1016/0041-0101(82)90225-2.PubMedCrossRef
23.
go back to reference O'Keefe MC, Caporale LH, Vogel CW: A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem. 1988, 263: 12690-12697.PubMed O'Keefe MC, Caporale LH, Vogel CW: A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem. 1988, 263: 12690-12697.PubMed
24.
go back to reference Kress LF, Catanese J, Hirayama T: Analysis of the effects of snake venom proteinases on the activity of human plasma C1 esterase inhibitor, alpha 1-antichymotrypsin and alpha 2-antiplasmin. Biochim Biophys Acta. 1983, 15: 113-120.CrossRef Kress LF, Catanese J, Hirayama T: Analysis of the effects of snake venom proteinases on the activity of human plasma C1 esterase inhibitor, alpha 1-antichymotrypsin and alpha 2-antiplasmin. Biochim Biophys Acta. 1983, 15: 113-120.CrossRef
25.
go back to reference Laemmli UK: Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.PubMedCrossRef Laemmli UK: Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.PubMedCrossRef
26.
go back to reference Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology. 1979, 24: 145-149. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology. 1979, 24: 145-149.
Metadata
Title
Micrurus snake venoms activate human complement system and generate anaphylatoxins
Authors
Gabriela D Tanaka
Giselle Pidde-Queiroz
Maria de Fátima D Furtado
Carmen van den Berg
Denise V Tambourgi
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2012
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-13-4

Other articles of this Issue 1/2012

BMC Immunology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine