Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Microtubule S-glutathionylation as a potential approach for antimitotic agents

Authors: Wei Chen, Teresa Seefeldt, Alan Young, Xiaoying Zhang, Yong Zhao, John Ruffolo, Radhey S Kaushik, Xiangming Guan

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

Microtubules have been one of the most effective targets for the development of anticancer agents. Cancer cells treated by these agents are characterized by cell arrest at G2/M phase. Microtubule-targeting drugs are, therefore, referred to as antimitotic agents. However, the clinical application of the current antimitotic drugs is hampered by emerging drug resistance which is the major cause of cancer treatment failure. The clinical success of antimitotic drugs and emerging drug resistance has prompted a search for new antimitotic agents, especially those with novel mechanisms of action. The aim of this study was to determine whether microtubules can be S-glutathionylated in cancer cells and whether the glutathionylation will lead to microtubule dysfunction and cell growth inhibition. The study will determine whether microtubule S-glutathionylation can be a novel approach for antimitotic agents.

Methods

2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino)phenyl carbamoylsulfanyl]propionic acid (2-AAPA) was used as a tool to induce microtubule S-glutathionylation. UACC-62 cells, a human melanoma cell line, were used as a cancer cell model. A pull-down assay with glutathione S-transferase (GST)-agarose beads followed by Western blot analysis was employed to confirm microtubule S-glutathionylation. Immunofluorescence microscopy using a mouse monoclonal anti-α-tubulin-FITC was used to study the effect of the S-glutathionylation on microtubule function; mainly polymerization and depolymerization. Flow cytometry was employed to examine the effect of the S-glutathionylation on cell cycle distribution and apoptosis. Cell morphological change was followed through the use of a Zeiss AXIO Observer A1 microscope. Cancer cell growth inhibition by 2-AAPA was investigated with ten human cancer cell lines.

Results

Our investigation demonstrated that cell morphology was changed and microtubules were S-glutathionylated in the presence of 2-AAPA in UACC-62 cells. Accordingly, microtubules were found depolymerized and cells were arrested at G2/M phase. The affected cells were found to undergo apoptosis. Cancer growth inhibition experiments demonstrated that the concentrations of 2-AAPA required to produce the effects on microtubules were compatible to the concentrations producing cancer cell growth inhibition.

Conclusions

The data from this investigation confirms that microtubule S-glutathionylation leads to microtubule dysfunction and cell growth inhibition and can be a novel approach for developing antimitotic agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sharp DJ, Rogers GC, Scholey JM: Microtubule motors in mitosis. Nature. 2000, 407: 41-47. 10.1038/35024000.CrossRefPubMed Sharp DJ, Rogers GC, Scholey JM: Microtubule motors in mitosis. Nature. 2000, 407: 41-47. 10.1038/35024000.CrossRefPubMed
2.
go back to reference Kanthou C, Tozer GM: The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood. 2002, 99: 2060-2069. 10.1182/blood.V99.6.2060.CrossRefPubMed Kanthou C, Tozer GM: The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood. 2002, 99: 2060-2069. 10.1182/blood.V99.6.2060.CrossRefPubMed
3.
go back to reference Dustin P: Microtubules, 2nd totally rev. edn. 1984, Berlin; New York: SpringerCrossRef Dustin P: Microtubules, 2nd totally rev. edn. 1984, Berlin; New York: SpringerCrossRef
4.
go back to reference The role of multiple tubulin isoforms in cellular microtubule function. Edited by: Raff EC. 1994, New York: John Wiley & Sons The role of multiple tubulin isoforms in cellular microtubule function. Edited by: Raff EC. 1994, New York: John Wiley & Sons
5.
go back to reference Zhou J, Giannakakou P: Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2005, 5: 65-71. 10.2174/1568011053352569.CrossRefPubMed Zhou J, Giannakakou P: Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents. 2005, 5: 65-71. 10.2174/1568011053352569.CrossRefPubMed
6.
go back to reference Nogales E, Wolf SG, Downing KH: Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998, 391: 199-203. 10.1038/34465.CrossRefPubMed Nogales E, Wolf SG, Downing KH: Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998, 391: 199-203. 10.1038/34465.CrossRefPubMed
7.
go back to reference Desai A, Mitchison TJ: Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997, 13: 83-117. 10.1146/annurev.cellbio.13.1.83.CrossRefPubMed Desai A, Mitchison TJ: Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997, 13: 83-117. 10.1146/annurev.cellbio.13.1.83.CrossRefPubMed
8.
go back to reference Jordan MA, Wilson L: Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004, 4: 253-265. 10.1038/nrc1317.CrossRefPubMed Jordan MA, Wilson L: Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004, 4: 253-265. 10.1038/nrc1317.CrossRefPubMed
9.
go back to reference Landino LM, Moynihan KL, Todd JV, Kennett KL: Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun. 2004, 314: 555-560. 10.1016/j.bbrc.2003.12.126.CrossRefPubMed Landino LM, Moynihan KL, Todd JV, Kennett KL: Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun. 2004, 314: 555-560. 10.1016/j.bbrc.2003.12.126.CrossRefPubMed
10.
go back to reference Cowan NJ: Tubulin genes and the diversity of microtubule function. Oxf Surv Eukaryot Genes. 1984, 1: 36-60.PubMed Cowan NJ: Tubulin genes and the diversity of microtubule function. Oxf Surv Eukaryot Genes. 1984, 1: 36-60.PubMed
11.
go back to reference Britto PJ, Knipling L, Wolff J: The local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem. 2002, 277: 29018-29027. 10.1074/jbc.M204263200.CrossRefPubMed Britto PJ, Knipling L, Wolff J: The local electrostatic environment determines cysteine reactivity of tubulin. J Biol Chem. 2002, 277: 29018-29027. 10.1074/jbc.M204263200.CrossRefPubMed
12.
go back to reference Britto PJ, Knipling L, McPhie P, Wolff J: Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization. Biochem J. 2005, 389: 549-558. 10.1042/BJ20042118.CrossRefPubMedPubMedCentral Britto PJ, Knipling L, McPhie P, Wolff J: Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization. Biochem J. 2005, 389: 549-558. 10.1042/BJ20042118.CrossRefPubMedPubMedCentral
13.
go back to reference Landino LM, Brown CM, Edson CA, Gilbert LJ, Grega-Larson N, Wirth AJ, Lane KC: Fluorescein-labeled glutathione to study protein S-glutathionylation. Anal Biochem. 2010, 402: 102-104. 10.1016/j.ab.2010.02.006.CrossRefPubMedPubMedCentral Landino LM, Brown CM, Edson CA, Gilbert LJ, Grega-Larson N, Wirth AJ, Lane KC: Fluorescein-labeled glutathione to study protein S-glutathionylation. Anal Biochem. 2010, 402: 102-104. 10.1016/j.ab.2010.02.006.CrossRefPubMedPubMedCentral
14.
go back to reference Huber K, Patel P, Zhang L, Evans H, Westwell AD, Fischer PM, Chan S, Martin S: 2-[(1-methylpropyl)dithio]-1H-imidazole inhibits tubulin polymerization through cysteine oxidation. Mol Cancer Ther. 2008, 7: 143-151. 10.1158/1535-7163.MCT-07-0486.CrossRefPubMed Huber K, Patel P, Zhang L, Evans H, Westwell AD, Fischer PM, Chan S, Martin S: 2-[(1-methylpropyl)dithio]-1H-imidazole inhibits tubulin polymerization through cysteine oxidation. Mol Cancer Ther. 2008, 7: 143-151. 10.1158/1535-7163.MCT-07-0486.CrossRefPubMed
15.
go back to reference Ducki S: Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer Agents Med Chem. 2009, 9: 336-347. 10.2174/1871520610909030336.CrossRefPubMed Ducki S: Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer Agents Med Chem. 2009, 9: 336-347. 10.2174/1871520610909030336.CrossRefPubMed
16.
go back to reference Chen W, Zhao Y, Seefeldt T, Guan X: Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal. 2008, 48: 1375-1380. 10.1016/j.jpba.2008.08.033.CrossRefPubMedPubMedCentral Chen W, Zhao Y, Seefeldt T, Guan X: Determination of thiols and disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J Pharm Biomed Anal. 2008, 48: 1375-1380. 10.1016/j.jpba.2008.08.033.CrossRefPubMedPubMedCentral
17.
go back to reference Zhao Y, Seefeldt T, Chen W, Wang X, Matthees D, Hu Y, Guan X: Effects of glutathione reductase inhibition on cellular thiol redox state and related systems. Arch Biochem Biophys. 2009, 485: 56-62. 10.1016/j.abb.2009.03.001.CrossRefPubMedPubMedCentral Zhao Y, Seefeldt T, Chen W, Wang X, Matthees D, Hu Y, Guan X: Effects of glutathione reductase inhibition on cellular thiol redox state and related systems. Arch Biochem Biophys. 2009, 485: 56-62. 10.1016/j.abb.2009.03.001.CrossRefPubMedPubMedCentral
18.
go back to reference Klatt P, Lamas S: Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000, 267: 4928-4944. 10.1046/j.1432-1327.2000.01601.x.CrossRefPubMed Klatt P, Lamas S: Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000, 267: 4928-4944. 10.1046/j.1432-1327.2000.01601.x.CrossRefPubMed
19.
go back to reference Townsend DM: S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv. 2007, 7: 313-324. 10.1124/mi.7.6.7.CrossRefPubMed Townsend DM: S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv. 2007, 7: 313-324. 10.1124/mi.7.6.7.CrossRefPubMed
20.
go back to reference Seefeldt T, Zhao Y, Chen W, Raza AS, Carlson L, Herman J, Stoebner A, Hanson S, Foll R, Guan X: Characterization of a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. J Biol Chem. 2009, 284: 2729-2737.CrossRefPubMedPubMedCentral Seefeldt T, Zhao Y, Chen W, Raza AS, Carlson L, Herman J, Stoebner A, Hanson S, Foll R, Guan X: Characterization of a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. J Biol Chem. 2009, 284: 2729-2737.CrossRefPubMedPubMedCentral
21.
go back to reference Bonifacino JS, Dell’Angelica EC, Springer TA: Immunoprecipitation. Curr Protoc Neurosci. 2006, Chapter 5: Unit 5-24. 5.24.1-5.24.28 Bonifacino JS, Dell’Angelica EC, Springer TA: Immunoprecipitation. Curr Protoc Neurosci. 2006, Chapter 5: Unit 5-24. 5.24.1-5.24.28
22.
go back to reference Cheng G, Ikeda Y, Iuchi Y, Fujii J: Detection of S-glutathionylated proteins by glutathione S-transferase overlay. Arch Biochem Biophys. 2005, 435: 42-49. 10.1016/j.abb.2004.12.016.CrossRefPubMed Cheng G, Ikeda Y, Iuchi Y, Fujii J: Detection of S-glutathionylated proteins by glutathione S-transferase overlay. Arch Biochem Biophys. 2005, 435: 42-49. 10.1016/j.abb.2004.12.016.CrossRefPubMed
23.
go back to reference Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, Agarwal S: Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem J. 2006, 396: 235-242. 10.1042/BJ20051735.CrossRefPubMedPubMedCentral Kaur G, Hollingshead M, Holbeck S, Schauer-Vukasinovic V, Camalier RF, Domling A, Agarwal S: Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochem J. 2006, 396: 235-242. 10.1042/BJ20051735.CrossRefPubMedPubMedCentral
24.
go back to reference Kiselyov A, Balakin KV, Tkachenko SE, Savchuk N, Ivachtchenko AV: Recent progress in discovery and development of antimitotic agents. Anticancer Agents Med Chem. 2007, 7: 189-208. 10.2174/187152007780058650.CrossRefPubMed Kiselyov A, Balakin KV, Tkachenko SE, Savchuk N, Ivachtchenko AV: Recent progress in discovery and development of antimitotic agents. Anticancer Agents Med Chem. 2007, 7: 189-208. 10.2174/187152007780058650.CrossRefPubMed
25.
go back to reference Schmidt M, Bastians H: Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Update. 2007, 10: 162-181. 10.1016/j.drup.2007.06.003.CrossRef Schmidt M, Bastians H: Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Update. 2007, 10: 162-181. 10.1016/j.drup.2007.06.003.CrossRef
26.
go back to reference Nagle A, Hur W, Gray NS: Antimitotic agents of natural origin. Curr Drug Targets. 2006, 7: 305-326. 10.2174/138945006776054933.CrossRefPubMed Nagle A, Hur W, Gray NS: Antimitotic agents of natural origin. Curr Drug Targets. 2006, 7: 305-326. 10.2174/138945006776054933.CrossRefPubMed
27.
go back to reference Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R: Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal. 2008, 10: 445-473. 10.1089/ars.2007.1716.CrossRefPubMed Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R: Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal. 2008, 10: 445-473. 10.1089/ars.2007.1716.CrossRefPubMed
28.
go back to reference Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A: Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009, 34: 85-96. 10.1016/j.tibs.2008.11.002.CrossRefPubMed Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A: Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci. 2009, 34: 85-96. 10.1016/j.tibs.2008.11.002.CrossRefPubMed
29.
go back to reference Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A: S-glutathionylation in protein redox regulation. Free Radic Biol Med. 2007, 43: 883-898. 10.1016/j.freeradbiomed.2007.06.014.CrossRefPubMed Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A: S-glutathionylation in protein redox regulation. Free Radic Biol Med. 2007, 43: 883-898. 10.1016/j.freeradbiomed.2007.06.014.CrossRefPubMed
30.
go back to reference Gallogly MM, Mieyal JJ: Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol. 2007, 7: 381-391. 10.1016/j.coph.2007.06.003.CrossRefPubMed Gallogly MM, Mieyal JJ: Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol. 2007, 7: 381-391. 10.1016/j.coph.2007.06.003.CrossRefPubMed
31.
go back to reference Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ: The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant. 2010, 138: 360-371. 10.1111/j.1399-3054.2009.01307.x.CrossRefPubMed Spadaro D, Yun BW, Spoel SH, Chu C, Wang YQ, Loake GJ: The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant. 2010, 138: 360-371. 10.1111/j.1399-3054.2009.01307.x.CrossRefPubMed
32.
go back to reference Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP: Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem. 2004, 279: 47939-47951. 10.1074/jbc.M408011200.CrossRefPubMed Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP: Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem. 2004, 279: 47939-47951. 10.1074/jbc.M408011200.CrossRefPubMed
33.
go back to reference Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH: Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans. 2005, 33: 1375-1377. 10.1042/BST20051375.CrossRefPubMed Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH: Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans. 2005, 33: 1375-1377. 10.1042/BST20051375.CrossRefPubMed
34.
go back to reference Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, et al: Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A. 2006, 103: 13086-13091. 10.1073/pnas.0603290103.CrossRefPubMedPubMedCentral Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, et al: Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A. 2006, 103: 13086-13091. 10.1073/pnas.0603290103.CrossRefPubMedPubMedCentral
35.
go back to reference Zhao Y, Seefeldt T, Chen W, Carlson L, Stoebner A, Hanson S, Foll R, Matthees DP, Palakurthi S, Guan X: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation. Free Radic Biol Med. 2009, 47: 176-183. 10.1016/j.freeradbiomed.2009.04.022.CrossRefPubMedPubMedCentral Zhao Y, Seefeldt T, Chen W, Carlson L, Stoebner A, Hanson S, Foll R, Matthees DP, Palakurthi S, Guan X: Increase in thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation. Free Radic Biol Med. 2009, 47: 176-183. 10.1016/j.freeradbiomed.2009.04.022.CrossRefPubMedPubMedCentral
36.
go back to reference Carletti B, Passarelli C, Sparaco M, Tozzi G, Pastore A, Bertini E, Piemonte F: Effect of protein glutathionylation on neuronal cytoskeleton: a potential link to neurodegeneration. Neuroscience. 2011, 192: 285-294.CrossRefPubMed Carletti B, Passarelli C, Sparaco M, Tozzi G, Pastore A, Bertini E, Piemonte F: Effect of protein glutathionylation on neuronal cytoskeleton: a potential link to neurodegeneration. Neuroscience. 2011, 192: 285-294.CrossRefPubMed
Metadata
Title
Microtubule S-glutathionylation as a potential approach for antimitotic agents
Authors
Wei Chen
Teresa Seefeldt
Alan Young
Xiaoying Zhang
Yong Zhao
John Ruffolo
Radhey S Kaushik
Xiangming Guan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-245

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine