Skip to main content
Top
Published in: Current Cardiovascular Risk Reports 1/2011

01-02-2011

microRNAs, Plasma Lipids, and Cardiovascular Disease

Authors: Alberto Dávalos, Carlos Fernández-Hernando

Published in: Current Cardiovascular Risk Reports | Issue 1/2011

Login to get access

Abstract

Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. Aberrant regulation of cholesterol and lipid homeostasis leads to metabolic syndrome and cardiovascular diseases. microRNAs (miRNAs) are short non-coding RNAs that control gene expression predominantly through post-transcriptional repression. They are implicated in the control of multiple physiologic and pathologic processes. However, the specific roles of miRNAs in regulating lipid metabolism are just beginning to be explored. Three independent reports have recently shown that miR-33 regulates cholesterol efflux and high-density lipoprotein biogenesis by downregulating the expression of ATP-binding cassette transporters A1 (ABCA1) and ABCG1 transporters. In addition to miR-33, miR-122 regulates lipoprotein metabolism. Suppression of miR-122 expression in vivo resulted in a decrease in total cholesterol levels. This review addresses recent research on the links between miRNAs and cholesterol metabolism and suggests novel ways to manage dyslipidemic patients.
Literature
1.
go back to reference Tontonoz P, Kim JB, Graves RA, Spiegelman BM: ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993, 13:4753–4759.PubMed Tontonoz P, Kim JB, Graves RA, Spiegelman BM: ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993, 13:4753–4759.PubMed
2.
go back to reference Kim JB, Spiegelman BM: ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996, 10:1096–1107.CrossRefPubMed Kim JB, Spiegelman BM: ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996, 10:1096–1107.CrossRefPubMed
3.
go back to reference Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89:331–340.CrossRefPubMed Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89:331–340.CrossRefPubMed
4.
go back to reference Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002, 109:1125–1131.PubMed Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002, 109:1125–1131.PubMed
5.
go back to reference Janowski BA, Willy PJ, Devi TR, et al.: An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996, 383:728–731.CrossRefPubMed Janowski BA, Willy PJ, Devi TR, et al.: An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996, 383:728–731.CrossRefPubMed
6.
go back to reference Zelcer N, Tontonoz P: Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006, 116:607–614.CrossRefPubMed Zelcer N, Tontonoz P: Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006, 116:607–614.CrossRefPubMed
7.
go back to reference Zelcer N, Hong C, Boyadjian R, Tontonoz P: LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325:100–104.CrossRefPubMed Zelcer N, Hong C, Boyadjian R, Tontonoz P: LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325:100–104.CrossRefPubMed
8.
go back to reference Horton JD, Cohen JC, Hobbs HH: PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 2009, 50(Suppl):S172–177.CrossRefPubMed Horton JD, Cohen JC, Hobbs HH: PCSK9: a convertase that coordinates LDL catabolism. J Lipid Res 2009, 50(Suppl):S172–177.CrossRefPubMed
9.
go back to reference D’Agostino RB Sr, Vasan RS, Pencina MJ. et al.: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008, 117:743–753.CrossRefPubMed D’Agostino RB Sr, Vasan RS, Pencina MJ. et al.: General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008, 117:743–753.CrossRefPubMed
10.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, et al.: Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:e46–e215.CrossRefPubMed Lloyd-Jones D, Adams RJ, Brown TM, et al.: Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:e46–e215.CrossRefPubMed
11.
go back to reference Miller NE, Thelle DS, Forde OH, Mjos OD: The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1977, 1:965–968.CrossRefPubMed Miller NE, Thelle DS, Forde OH, Mjos OD: The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1977, 1:965–968.CrossRefPubMed
12.
go back to reference Brousseau ME, Schaefer EJ, Wolfe ML, et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004, 350:1505–1515.CrossRefPubMed Brousseau ME, Schaefer EJ, Wolfe ML, et al.: Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 2004, 350:1505–1515.CrossRefPubMed
13.
go back to reference Nissen SE, Tardif JC, Nicholls SJ, et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007, 356:1304–1316.CrossRefPubMed Nissen SE, Tardif JC, Nicholls SJ, et al.: Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 2007, 356:1304–1316.CrossRefPubMed
14.
15.
go back to reference Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs. Cell 2009, 136:629–641.CrossRefPubMed Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs. Cell 2009, 136:629–641.CrossRefPubMed
16.
go back to reference Mattick JS, Makunin IV: Small regulatory RNAs in mammals. Hum Mol Genet 2005, 14 Spec No 1:R121–132. Mattick JS, Makunin IV: Small regulatory RNAs in mammals. Hum Mol Genet 2005, 14 Spec No 1:R121–132.
17.
go back to reference • Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215–233. This study reviewed the mechanism of actions of miRNAs and their regulatory functions. • Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215–233. This study reviewed the mechanism of actions of miRNAs and their regulatory functions.
18.
go back to reference Ameres SL, Horwich MD, Hung JH, et al.: Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010, 328:1534–1539.CrossRefPubMed Ameres SL, Horwich MD, Hung JH, et al.: Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010, 328:1534–1539.CrossRefPubMed
19.
go back to reference Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318:1931–1934.CrossRefPubMed Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318:1931–1934.CrossRefPubMed
20.
go back to reference Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835–840.CrossRefPubMed Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835–840.CrossRefPubMed
21.
go back to reference Cifuentes D, Xue H, Taylor DW et al.: A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010, 328:1694–1698.CrossRefPubMed Cifuentes D, Xue H, Taylor DW et al.: A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 2010, 328:1694–1698.CrossRefPubMed
22.
23.
go back to reference Szell M, Bata-Csorgo Z, Kemeny L: The enigmatic world of mRNA-like ncRNAs: their role in human evolution and in human diseases. Semin Cancer Biol 2008, 18:141–148.CrossRefPubMed Szell M, Bata-Csorgo Z, Kemeny L: The enigmatic world of mRNA-like ncRNAs: their role in human evolution and in human diseases. Semin Cancer Biol 2008, 18:141–148.CrossRefPubMed
24.
go back to reference Krutzfeldt J, Rajewsky N, Braich R et al.: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438:685–689.CrossRefPubMed Krutzfeldt J, Rajewsky N, Braich R et al.: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438:685–689.CrossRefPubMed
25.
go back to reference Lagos-Quintana M, Rauhut R, Yalcin A et al.: Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12:735–739.CrossRefPubMed Lagos-Quintana M, Rauhut R, Yalcin A et al.: Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12:735–739.CrossRefPubMed
26.
go back to reference Jopling CL, Yi M, Lancaster AM et al.: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309:1577–1581.CrossRefPubMed Jopling CL, Yi M, Lancaster AM et al.: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309:1577–1581.CrossRefPubMed
27.
go back to reference Pedersen IM, Cheng G, Wieland S et al.: Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449:919–922.CrossRefPubMed Pedersen IM, Cheng G, Wieland S et al.: Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449:919–922.CrossRefPubMed
28.
go back to reference • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al.: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327:198–201. This report shows the therapeutic efficacy of miR-122 inhibition in primates with chronic hepatitis C virus infection.CrossRefPubMed • Lanford RE, Hildebrandt-Eriksen ES, Petri A et al.: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010, 327:198–201. This report shows the therapeutic efficacy of miR-122 inhibition in primates with chronic hepatitis C virus infection.CrossRefPubMed
29.
go back to reference Esau C, Davis S, Murray SF, et al.: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3:87–98.CrossRefPubMed Esau C, Davis S, Murray SF, et al.: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3:87–98.CrossRefPubMed
30.
go back to reference • Elmen J, Lindow M, Schutz S et al.: LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452:896–899. This is the first study showing the reduction of cholesterol and tryglicerides plasma levels in non-human primates treated with microRNAs inhibitors. • Elmen J, Lindow M, Schutz S et al.: LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452:896–899. This is the first study showing the reduction of cholesterol and tryglicerides plasma levels in non-human primates treated with microRNAs inhibitors.
31.
go back to reference Gatfield D, Le Martelot G, Vejnar CE et al.: Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009, 23:1313–1326.CrossRefPubMed Gatfield D, Le Martelot G, Vejnar CE et al.: Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009, 23:1313–1326.CrossRefPubMed
32.
go back to reference • Rayner KJ, Suarez Y, Davalos A, et al.: MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570–1573. This is the first identification of miR-33 as target of ABCA1, ABCG1, and NPC1 expression. Importantly, this study showed the in vivo efficacy of anti-miR-33 in raising HDL plasma levels. • Rayner KJ, Suarez Y, Davalos A, et al.: MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570–1573. This is the first identification of miR-33 as target of ABCA1, ABCG1, and NPC1 expression. Importantly, this study showed the in vivo efficacy of anti-miR-33 in raising HDL plasma levels.
33.
go back to reference • Najafi-Shoushtari SH, Kristo F, Li Y et al.: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566–1569. This study reports the inhibitory effect of miR-33 on ABCA1 expression. The authors also report the efficacy of anti-miR-33 therapy in raising HDL plasma levels in mice. • Najafi-Shoushtari SH, Kristo F, Li Y et al.: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566–1569. This study reports the inhibitory effect of miR-33 on ABCA1 expression. The authors also report the efficacy of anti-miR-33 therapy in raising HDL plasma levels in mice.
34.
go back to reference • Marquart TJ, Allen RM, Ory DS, Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010, 107:12228–12232. This study reported the inhibitory action of miR-33 on ABCA1 and ABCG1 expression and HDL levels in mice. • Marquart TJ, Allen RM, Ory DS, Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 2010, 107:12228–12232. This study reported the inhibitory action of miR-33 on ABCA1 and ABCG1 expression and HDL levels in mice.
35.
go back to reference • Horie T, Ono K, Horiguchi M et al.: MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010 (in press). In this study, the miR-33-deficient mouse model was generated. • Horie T, Ono K, Horiguchi M et al.: MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010 (in press). In this study, the miR-33-deficient mouse model was generated.
36.
go back to reference Alberti KG, Zimmet P, Shaw J: Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006, 23:469–480.CrossRefPubMed Alberti KG, Zimmet P, Shaw J: Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006, 23:469–480.CrossRefPubMed
37.
go back to reference Hu G, Qiao Q, Tuomilehto J et al.: Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia 2004, 47:1245–1256.PubMed Hu G, Qiao Q, Tuomilehto J et al.: Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia 2004, 47:1245–1256.PubMed
38.
go back to reference Carr DB, Utzschneider KM, Hull RL et al.: Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004, 53:2087–2094.CrossRefPubMed Carr DB, Utzschneider KM, Hull RL et al.: Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 2004, 53:2087–2094.CrossRefPubMed
39.
go back to reference Postic C, Girard J: Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008, 118:829–838.CrossRefPubMed Postic C, Girard J: Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008, 118:829–838.CrossRefPubMed
40.
go back to reference Brown MS, Ye J, Goldstein JL: Medicine. HDL miR-ed down by SREBP introns. Science 2010, 328:1495–1496.CrossRefPubMed Brown MS, Ye J, Goldstein JL: Medicine. HDL miR-ed down by SREBP introns. Science 2010, 328:1495–1496.CrossRefPubMed
41.
go back to reference Gerin I, Clerbaux LA, Haumont O et al.: Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010 (in press). Gerin I, Clerbaux LA, Haumont O et al.: Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010 (in press).
42.
go back to reference Iliopoulos D, Drosatos K, Hiyama Y et al.: MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010, 51:1513–1523.CrossRefPubMed Iliopoulos D, Drosatos K, Hiyama Y et al.: MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res 2010, 51:1513–1523.CrossRefPubMed
43.
go back to reference Raal FJ, Santos RD, Blom DJ et al.: Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010, 375:998–1006.CrossRefPubMed Raal FJ, Santos RD, Blom DJ et al.: Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010, 375:998–1006.CrossRefPubMed
44.
go back to reference Valadi H, Ekstrom K, Bossios A et al.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9:654–659.CrossRefPubMed Valadi H, Ekstrom K, Bossios A et al.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9:654–659.CrossRefPubMed
45.
go back to reference Michael A, Bajracharya SD, Yuen PS et al.: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010, 16:34–38.CrossRefPubMed Michael A, Bajracharya SD, Yuen PS et al.: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010, 16:34–38.CrossRefPubMed
46.
go back to reference Chen X, Ba Y, Ma L et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18:997–1006.CrossRefPubMed Chen X, Ba Y, Ma L et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18:997–1006.CrossRefPubMed
47.
go back to reference Ji X, Takahashi R, Hiura Y et al.: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 2009, 55:1944–1949.CrossRefPubMed Ji X, Takahashi R, Hiura Y et al.: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 2009, 55:1944–1949.CrossRefPubMed
48.
go back to reference D’Alessandra Y, Devanna P, Limana F et al.: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010 (in press). D’Alessandra Y, Devanna P, Limana F et al.: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010 (in press).
49.
go back to reference Wang K, Zhang S, Marzolf B, et al.: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 2009, 106:4402–4407.CrossRefPubMed Wang K, Zhang S, Marzolf B, et al.: Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A 2009, 106:4402–4407.CrossRefPubMed
50.
go back to reference Weissglas-Volkov D, Pajukanta P: Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010, 51:2032–2057.CrossRefPubMed Weissglas-Volkov D, Pajukanta P: Genetic causes of high and low serum HDL-cholesterol. J Lipid Res 2010, 51:2032–2057.CrossRefPubMed
51.
go back to reference Teslovich TM, Musunuru K, Smith AV, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature2010, 466:707–713.CrossRefPubMed Teslovich TM, Musunuru K, Smith AV, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature2010, 466:707–713.CrossRefPubMed
Metadata
Title
microRNAs, Plasma Lipids, and Cardiovascular Disease
Authors
Alberto Dávalos
Carlos Fernández-Hernando
Publication date
01-02-2011
Publisher
Current Science Inc.
Published in
Current Cardiovascular Risk Reports / Issue 1/2011
Print ISSN: 1932-9520
Electronic ISSN: 1932-9563
DOI
https://doi.org/10.1007/s12170-010-0145-1

Other articles of this Issue 1/2011

Current Cardiovascular Risk Reports 1/2011 Go to the issue