Skip to main content
Top
Published in: Inflammation 1/2016

01-02-2016

MicroRNA-26a Promotes Regulatory T cells and Suppresses Autoimmune Diabetes in Mice

Authors: Hui Ma, Shoutao Zhang, Doufei Shi, Yanhua Mao, Jianguo Cui

Published in: Inflammation | Issue 1/2016

Login to get access

Abstract

Type-1 diabetes (TID) is an autoimmune disease in which the body’s own immune cells attack islet β cells, the cells in the pancreas that produce and release the hormone insulin. Mir-26a has been reported to play functions in cellular differentiation, cell growth, cell apoptosis, and metastasis. However, the role of microRNA-26a (Mir-26a) in autoimmune TID has never been investigated. In our current study, we found that pre-Mir-26a (LV-26a)-treated mice had significantly longer normoglycemic time and lower frequency of autoreactive IFN-γ-producing CD4+ cells compared with an empty lentiviral vector (LV-Con)-treated non-obese diabetic (NOD) mice. Mir-26a suppresses autoreactive T cells and expands Tregs in vivo and in vitro. Furthermore, in our adoptive transfer study, the groups receiving whole splenocytes and CD25-depleted splenocytes from LV-Con-treated diabetic NOD mice develop diabetes at 3 to 4 weeks of age. In comparison, mice injected with undepleted splenocytes obtained from LV-26a-treated reversal NOD mice develop diabetes after 6–8 weeks. And depletion of CD25+ cells in the splenocytes of reversed mice abrogates the delay in diabetes onset. In conclusion, Mir-26a suppresses autoimmune diabetes in NOD mice in part through promoted regulatory T cells (Tregs) expression.
Literature
2.
go back to reference O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology 10: 111–122.CrossRefPubMed O’Connell, R.M., D.S. Rao, A.A. Chaudhuri, and D. Baltimore. 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology 10: 111–122.CrossRefPubMed
3.
go back to reference Lu, J., G. Getz, E.A. Miska, et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435: 834–838.CrossRefPubMed Lu, J., G. Getz, E.A. Miska, et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435: 834–838.CrossRefPubMed
4.
go back to reference Zhang, B., X.X. Liu, J.R. He, et al. 2011. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32: 2–9.CrossRefPubMed Zhang, B., X.X. Liu, J.R. He, et al. 2011. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32: 2–9.CrossRefPubMed
5.
go back to reference Chen, L., J. Zheng, Y. Zhang, et al. 2011. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Molecular Therapy 19: 1521–1528.PubMedCentralCrossRefPubMed Chen, L., J. Zheng, Y. Zhang, et al. 2011. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Molecular Therapy 19: 1521–1528.PubMedCentralCrossRefPubMed
6.
go back to reference Leeper, N.J., A. Raiesdana, Y. Kojima, et al. 2011. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. Journal of Cellular Physiology 226: 1035–1043.PubMedCentralCrossRefPubMed Leeper, N.J., A. Raiesdana, Y. Kojima, et al. 2011. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. Journal of Cellular Physiology 226: 1035–1043.PubMedCentralCrossRefPubMed
7.
go back to reference Liu, B., X. Wu, B. Liu, et al. 2012. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochimica et Biophysica Acta 1822: 1692–1704.CrossRefPubMed Liu, B., X. Wu, B. Liu, et al. 2012. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochimica et Biophysica Acta 1822: 1692–1704.CrossRefPubMed
8.
go back to reference Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y. 2014. miR26a Modulates T17/T Balance in the EAE Model of Multiple Sclerosis by Targeting IL6. Neuromolecular Medicine. Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y. 2014. miR26a Modulates T17/T Balance in the EAE Model of Multiple Sclerosis by Targeting IL6. Neuromolecular Medicine.
9.
go back to reference Xie F, Chai J, Zhang Z, Hu Q, Ma T. 2015. MicroRNA 26a Prolongs Skin Allograft Survival and Promotes Regulatory T Cells Expansion in mice. Transplant International. Xie F, Chai J, Zhang Z, Hu Q, Ma T. 2015. MicroRNA 26a Prolongs Skin Allograft Survival and Promotes Regulatory T Cells Expansion in mice. Transplant International.
10.
go back to reference Wing, K., and S. Sakaguchi. 2010. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunology 11: 7–13.CrossRefPubMed Wing, K., and S. Sakaguchi. 2010. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nature Immunology 11: 7–13.CrossRefPubMed
11.
go back to reference Petzold, C., J. Riewaldt, D. Watts, T. Sparwasser, S. Schallenberg, and K. Kretschmer. 2013. Foxp3(+) regulatory T cells in mouse models of type 1 diabetes. Journal of Diabetes Research 2013: 940710.PubMedCentralCrossRefPubMed Petzold, C., J. Riewaldt, D. Watts, T. Sparwasser, S. Schallenberg, and K. Kretschmer. 2013. Foxp3(+) regulatory T cells in mouse models of type 1 diabetes. Journal of Diabetes Research 2013: 940710.PubMedCentralCrossRefPubMed
12.
go back to reference Zoka, A., G. Barna, A. Somogyi, G. Muzes, A. Olah, Z. Al-Aissa, O. Hadarits, K. Kiss and G. Firneisz. 2014. Extension of the CD4Foxp3CD25 regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity: 1–9. Zoka, A., G. Barna, A. Somogyi, G. Muzes, A. Olah, Z. Al-Aissa, O. Hadarits, K. Kiss and G. Firneisz. 2014. Extension of the CD4Foxp3CD25 regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity: 1–9.
13.
go back to reference Abdi, R., P. Fiorina, C.N. Adra, M. Atkinson, and M.H. Sayegh. 2008. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57: 1759–1767.PubMedCentralCrossRefPubMed Abdi, R., P. Fiorina, C.N. Adra, M. Atkinson, and M.H. Sayegh. 2008. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57: 1759–1767.PubMedCentralCrossRefPubMed
14.
go back to reference Fiorina, P., M. Jurewicz, A. Augello, et al. 2009. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology 183: 993–1004.CrossRef Fiorina, P., M. Jurewicz, A. Augello, et al. 2009. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology 183: 993–1004.CrossRef
15.
go back to reference Anderson, M.S., and J.A. Bluestone. 2005. The NOD mouse: a model of immune dysregulation. Annual Review of Immunology 23: 447–485.CrossRefPubMed Anderson, M.S., and J.A. Bluestone. 2005. The NOD mouse: a model of immune dysregulation. Annual Review of Immunology 23: 447–485.CrossRefPubMed
16.
go back to reference Bach, J.F. 1994. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews 15: 516–542.CrossRefPubMed Bach, J.F. 1994. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews 15: 516–542.CrossRefPubMed
17.
18.
go back to reference Andre, I., A. Gonzalez, B. Wang, J. Katz, C. Benoist, and D. Mathis. 1996. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proceedings of the National Academy of Sciences of the United States of America 93: 2260–2263.PubMedCentralCrossRefPubMed Andre, I., A. Gonzalez, B. Wang, J. Katz, C. Benoist, and D. Mathis. 1996. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proceedings of the National Academy of Sciences of the United States of America 93: 2260–2263.PubMedCentralCrossRefPubMed
19.
go back to reference Brusko, T.M., C.H. Wasserfall, M.J. Clare-Salzler, D.A. Schatz, and M.A. Atkinson. 2005. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414.CrossRefPubMed Brusko, T.M., C.H. Wasserfall, M.J. Clare-Salzler, D.A. Schatz, and M.A. Atkinson. 2005. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414.CrossRefPubMed
20.
go back to reference Pop, S.M., C.P. Wong, D.A. Culton, S.H. Clarke, and R. Tisch. 2005. Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+ CD25+ regulatory T cells during autoimmune diabetes. Journal of Experimental Medicine 201: 1333–1346.PubMedCentralCrossRefPubMed Pop, S.M., C.P. Wong, D.A. Culton, S.H. Clarke, and R. Tisch. 2005. Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+ CD25+ regulatory T cells during autoimmune diabetes. Journal of Experimental Medicine 201: 1333–1346.PubMedCentralCrossRefPubMed
21.
go back to reference Tritt, M., E. Sgouroudis, E. D’Hennezel, A. Albanese, and C.A. Piccirillo. 2008. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57: 113–123.CrossRefPubMed Tritt, M., E. Sgouroudis, E. D’Hennezel, A. Albanese, and C.A. Piccirillo. 2008. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57: 113–123.CrossRefPubMed
22.
go back to reference You, S., M. Belghith, S. Cobbold, et al. 2005. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54: 1415–1422.CrossRefPubMed You, S., M. Belghith, S. Cobbold, et al. 2005. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54: 1415–1422.CrossRefPubMed
23.
go back to reference Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature Immunology 4: 330–336.CrossRefPubMed Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky. 2003. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nature Immunology 4: 330–336.CrossRefPubMed
24.
go back to reference Golshayan, D., S. Jiang, J. Tsang, M.I. Garin, C. Mottet, and R.I. Lechler. 2007. In vitro-expanded donor alloantigen-specific CD4+ CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109: 827–835.CrossRefPubMed Golshayan, D., S. Jiang, J. Tsang, M.I. Garin, C. Mottet, and R.I. Lechler. 2007. In vitro-expanded donor alloantigen-specific CD4+ CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 109: 827–835.CrossRefPubMed
25.
go back to reference Mottet, C., H.H. Uhlig, and F. Powrie. 2003. Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells. Journal of Immunology 170: 3939–3943.CrossRef Mottet, C., H.H. Uhlig, and F. Powrie. 2003. Cutting edge: cure of colitis by CD4+ CD25+ regulatory T cells. Journal of Immunology 170: 3939–3943.CrossRef
26.
go back to reference Tang, Q., K.J. Henriksen, M. Bi, et al. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. Journal of Experimental Medicine 199: 1455–1465.PubMedCentralCrossRefPubMed Tang, Q., K.J. Henriksen, M. Bi, et al. 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. Journal of Experimental Medicine 199: 1455–1465.PubMedCentralCrossRefPubMed
27.
go back to reference Hall, B.M., G. Tran, and S.J. Hodgkinson. 2009. Alloantigen specific T regulatory cells in transplant tolerance. International Immunopharmacology 9: 570–574.CrossRefPubMed Hall, B.M., G. Tran, and S.J. Hodgkinson. 2009. Alloantigen specific T regulatory cells in transplant tolerance. International Immunopharmacology 9: 570–574.CrossRefPubMed
28.
go back to reference O’Connell, P.J., S. Yi, E.M. Carrington, and A.M. Lew. 2010. Role of regulatory T cells in xenotransplantation. Current Opinion in Organ Transplantation 15: 224–229.CrossRefPubMed O’Connell, P.J., S. Yi, E.M. Carrington, and A.M. Lew. 2010. Role of regulatory T cells in xenotransplantation. Current Opinion in Organ Transplantation 15: 224–229.CrossRefPubMed
29.
go back to reference Borsellino, G., M. Kleinewietfeld, D. Di Mitri, et al. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.CrossRefPubMed Borsellino, G., M. Kleinewietfeld, D. Di Mitri, et al. 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.CrossRefPubMed
30.
go back to reference Kobie, J.J., P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, and T.R. Mosmann. 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. Journal of Immunology 177: 6780–6786.CrossRef Kobie, J.J., P.R. Shah, L. Yang, J.A. Rebhahn, D.J. Fowell, and T.R. Mosmann. 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. Journal of Immunology 177: 6780–6786.CrossRef
31.
go back to reference Mira, E., B. Leon, D.F. Barber, et al. 2008. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. Journal of Immunology 181: 3524–3534.CrossRef Mira, E., B. Leon, D.F. Barber, et al. 2008. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. Journal of Immunology 181: 3524–3534.CrossRef
32.
go back to reference Murphy, T.J., C.N. Ni, Y. Zang, J.A. Mannick, and J.A. Lederer. 2005. CD4+ CD25+ regulatory T cells control innate immune reactivity after injury. Journal of Immunology 174: 2957–2963.CrossRef Murphy, T.J., C.N. Ni, Y. Zang, J.A. Mannick, and J.A. Lederer. 2005. CD4+ CD25+ regulatory T cells control innate immune reactivity after injury. Journal of Immunology 174: 2957–2963.CrossRef
34.
go back to reference Mahajan, D., Y. Wang, X. Qin, et al. 2006. CD4+ CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. Journal of the American Society of Nephrology 17: 2731–2741.CrossRefPubMed Mahajan, D., Y. Wang, X. Qin, et al. 2006. CD4+ CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. Journal of the American Society of Nephrology 17: 2731–2741.CrossRefPubMed
Metadata
Title
MicroRNA-26a Promotes Regulatory T cells and Suppresses Autoimmune Diabetes in Mice
Authors
Hui Ma
Shoutao Zhang
Doufei Shi
Yanhua Mao
Jianguo Cui
Publication date
01-02-2016
Publisher
Springer US
Published in
Inflammation / Issue 1/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0215-0

Other articles of this Issue 1/2016

Inflammation 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine