Skip to main content
Top
Published in: Journal of Ovarian Research 1/2015

Open Access 01-12-2015 | Research

MicroRNA-186 induces sensitivity of ovarian cancer cells to paclitaxel and cisplatin by targeting ABCB1

Authors: Kai-Xuan Sun, Jin-Wen Jiao, Shuo Chen, Bo-Liang Liu, Yang Zhao

Published in: Journal of Ovarian Research | Issue 1/2015

Login to get access

Abstract

Background

Recent studies have shown that microRNAs may regulate the ABCB1 gene (ATP-binding cassette, sub-family B [MDR/TAP], member 1). Computational programs have predicted that the 3’-untranslated region (3’-UTR) of ABCB1 contains a potential miRNA-binding site for miR-186. Here, we investigated the role of miR-186 in sensitizing ovarian cancer cells to paclitaxel and cisplatin.

Results

Human ovarian carcinoma cell lines OVCAR3, A2780, A2780/DDP, and A2780/Taxol were exposed to paclitaxel or cisplatin with or without miR-186 transfection, and cell viability was determined by MTT assay. Reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis were used to assess the MDR1, GST-π, and MRP1 expression levels. Dual-luciferase reporter assay was used to reveal the correlation between miR-186 and ABCB1. Lower miR-186 while higher MDR1 and GST-π mRNA expression levels were found in the A2780/Taxol and A2780/DDP cells than in the A2780 cells. After miR-186 transfection, all the cell lines showed increased sensitivity to paclitaxel and cisplatin. MiR-186 transfection induced apoptosis while anti-miR-186 transfection reduced apoptosis. The dual-luciferase reporter assay verified that that miR-186 combined with the 3’-untranslated region (UTR) of ABCB1. MDR1 and GST-π mRNA and protein expression levels were downregulated after transfection with miR-186 but upregulated following anti-miR-186 transfection compared to the mock and negative control cancer cells; however, the MRP1 expression levels did not significantly differ among the groups.

Conclusion

Our results are the first to demonstrate that miR-186 may sensitize ovarian cancer cell to paclitaxel and cisplatin by targeting ABCB1 and modulating the expression of GST-π.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119:125–30.CrossRefPubMed Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119:125–30.CrossRefPubMed
4.
go back to reference Li H, Xu H, Shen H, Li H. microRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–8.PubMedCentralPubMed Li H, Xu H, Shen H, Li H. microRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–8.PubMedCentralPubMed
5.
go back to reference Ma J, Wang T, Guo R, Yang X, Yin J, Yu J, et al. Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target. 2015;25:1–6. Ma J, Wang T, Guo R, Yang X, Yin J, Yu J, et al. Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target. 2015;25:1–6.
6.
go back to reference Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135(6):1286–96.CrossRefPubMed Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135(6):1286–96.CrossRefPubMed
7.
go back to reference Lu F, Zhang J, Ji M, Li P, Du Y, Wang H, et al. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol. 2014;45(1):383–92.PubMed Lu F, Zhang J, Ji M, Li P, Du Y, Wang H, et al. miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol. 2014;45(1):383–92.PubMed
8.
go back to reference Hu Y, Xu K, Yagüe E. miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat. 2015;151(2):269–80.CrossRefPubMed Hu Y, Xu K, Yagüe E. miR-218 targets survivin and regulates resistance to chemotherapeutics in breast cancer. Breast Cancer Res Treat. 2015;151(2):269–80.CrossRefPubMed
9.
go back to reference Haenisch S, Werk AN, Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol. 2013;77(4):587–96.CrossRef Haenisch S, Werk AN, Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol. 2013;77(4):587–96.CrossRef
10.
go back to reference Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–32.CrossRefPubMed Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–32.CrossRefPubMed
11.
go back to reference Zhu X, Shen H, Yin X, Long L, Xie C, Liu Y, Hui L, Lin X, Fang Y, Cao Y, Xu Y, Li M, Xu W, Li Y: miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 2015, Apr 13. doi: 10.1038/onc.2015.84. Zhu X, Shen H, Yin X, Long L, Xie C, Liu Y, Hui L, Lin X, Fang Y, Cao Y, Xu Y, Li M, Xu W, Li Y: miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 2015, Apr 13. doi: 10.​1038/​onc.​2015.​84.
12.
go back to reference Chen S, Jiao JW, Sun KX, Zong ZH, Yang Z. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des Devel Ther. 2015;9:5225–35.PubMedCentralPubMed Chen S, Jiao JW, Sun KX, Zong ZH, Yang Z. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des Devel Ther. 2015;9:5225–35.PubMedCentralPubMed
14.
go back to reference Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMed
15.
go back to reference Babu JM, Prathibha R, Jijith VS, Hariharan R, Pillai MR. A miR-centric view of head and neck cancers. Biochim Biophys Acta. 1816;2011:67–72. Babu JM, Prathibha R, Jijith VS, Hariharan R, Pillai MR. A miR-centric view of head and neck cancers. Biochim Biophys Acta. 1816;2011:67–72.
16.
go back to reference To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 Expression at the 3’ Untranslated Region of Its mRNA through Modulation of Transcript Stability and Protein Translation by a Putative MicroRNA in the S1 Colon Cancer Cell Line. Mol Cell Biol. 2008;28(17):5147–61.PubMedCentralCrossRefPubMed To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 Expression at the 3’ Untranslated Region of Its mRNA through Modulation of Transcript Stability and Protein Translation by a Putative MicroRNA in the S1 Colon Cancer Cell Line. Mol Cell Biol. 2008;28(17):5147–61.PubMedCentralCrossRefPubMed
17.
go back to reference Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15.CrossRefPubMed Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15.CrossRefPubMed
18.
go back to reference Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review). Int J Oncol. 2012;41(6):1897–912.PubMed Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment of cancer (Review). Int J Oncol. 2012;41(6):1897–912.PubMed
20.
go back to reference Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 2014;15(10):4245–50.CrossRefPubMed Sun P, Hu JW, Xiong WJ, Mi J. miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts. Asian Pac J Cancer Prev. 2014;15(10):4245–50.CrossRefPubMed
21.
go back to reference Cui G, Cui M, Li Y, Liang Y, Li W, Guo H, et al. MiR-186 targets ROCK1 to suppress the growth and metastasis of NSCLC cells. Tumour Biol. 2014;35(9):8933–7.CrossRefPubMed Cui G, Cui M, Li Y, Liang Y, Li W, Guo H, et al. MiR-186 targets ROCK1 to suppress the growth and metastasis of NSCLC cells. Tumour Biol. 2014;35(9):8933–7.CrossRefPubMed
22.
go back to reference Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y, et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013;73(2):756–66.CrossRefPubMed Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y, et al. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013;73(2):756–66.CrossRefPubMed
23.
go back to reference Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP binding cassette transporter genes. Biochim Biophys Acta. 1775;2007:237–62. Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP binding cassette transporter genes. Biochim Biophys Acta. 1775;2007:237–62.
24.
go back to reference Lage H. ABC-transporters: Implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003;22:188–99.CrossRefPubMed Lage H. ABC-transporters: Implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003;22:188–99.CrossRefPubMed
25.
go back to reference Wu Q, Yang ZP, Nie YZ, Shi YQ, Fan DM. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347:159–66.CrossRefPubMed Wu Q, Yang ZP, Nie YZ, Shi YQ, Fan DM. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014;347:159–66.CrossRefPubMed
26.
go back to reference Zhang T, Guan M, Jin HY, Lu Y. Reversal of multidrug resistance by small interfer ing double-stranded RNAs in ovarian cancer cells. Gynecol Oncol. 2005;97:501–7.CrossRefPubMed Zhang T, Guan M, Jin HY, Lu Y. Reversal of multidrug resistance by small interfer ing double-stranded RNAs in ovarian cancer cells. Gynecol Oncol. 2005;97:501–7.CrossRefPubMed
27.
go back to reference Chen J, Ding Z, Peng Y, Pan F, Li J, Zou L, et al. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via Downregulation of MDR1/P-glycoprotein. PLoS One. 2014;9(6):e98882.PubMedCentralCrossRefPubMed Chen J, Ding Z, Peng Y, Pan F, Li J, Zou L, et al. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via Downregulation of MDR1/P-glycoprotein. PLoS One. 2014;9(6):e98882.PubMedCentralCrossRefPubMed
28.
go back to reference Andorfer P, Rotheneder H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett. 2013;587:1504–9.CrossRefPubMed Andorfer P, Rotheneder H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett. 2013;587:1504–9.CrossRefPubMed
29.
go back to reference Wang Q, Wang Z, Chu LY, Xu L, Kan P, Xin X, et al. The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PLoS One. 2015;10(5):e0125473.PubMedCentralCrossRefPubMed Wang Q, Wang Z, Chu LY, Xu L, Kan P, Xin X, et al. The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PLoS One. 2015;10(5):e0125473.PubMedCentralCrossRefPubMed
30.
go back to reference Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int. 2013;2013:241763.PubMedCentralCrossRefPubMed Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int. 2013;2013:241763.PubMedCentralCrossRefPubMed
31.
go back to reference Xing AY, Shi DB, Liu W, Chen X, Sun YL, Wang X, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol. 2013;94:481–5.CrossRefPubMed Xing AY, Shi DB, Liu W, Chen X, Sun YL, Wang X, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol. 2013;94:481–5.CrossRefPubMed
32.
go back to reference Popęda M, Płuciennik E, Bednarek AK. Proteins in cancer multidrug resistance. Postepy Hig Med Dosw. 2014;68:616–32.CrossRef Popęda M, Płuciennik E, Bednarek AK. Proteins in cancer multidrug resistance. Postepy Hig Med Dosw. 2014;68:616–32.CrossRef
33.
go back to reference Beeghly A, Katsaros D, Chen H, Fracchioli S, Zhang Y, Massobrio M, et al. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol Oncol. 2006;100(2):330–7.CrossRefPubMed Beeghly A, Katsaros D, Chen H, Fracchioli S, Zhang Y, Massobrio M, et al. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol Oncol. 2006;100(2):330–7.CrossRefPubMed
34.
go back to reference Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: From detoxification toward cancer prevention and diagnosis. Front Pharmacol. 2014;5:170.PubMedCentralCrossRefPubMed Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: From detoxification toward cancer prevention and diagnosis. Front Pharmacol. 2014;5:170.PubMedCentralCrossRefPubMed
Metadata
Title
MicroRNA-186 induces sensitivity of ovarian cancer cells to paclitaxel and cisplatin by targeting ABCB1
Authors
Kai-Xuan Sun
Jin-Wen Jiao
Shuo Chen
Bo-Liang Liu
Yang Zhao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2015
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0207-6

Other articles of this Issue 1/2015

Journal of Ovarian Research 1/2015 Go to the issue