Skip to main content
Top
Published in: Tumor Biology 12/2014

01-12-2014 | Research Article

MicroRNA 130b enhances drug resistance in human ovarian cancer cells

Authors: Can Zong, Jun Wang, Tie-Mei Shi

Published in: Tumor Biology | Issue 12/2014

Login to get access

Abstract

MicroRNAs (miRNAs) have recently been identified as a novel class of gene regulators, playing an important role in various malignancies. In the present study, we investigated the role of miRNA-130b in the development of drug resistance in ovarian cancer cells. The human ovarian carcinoma cell line A2780 and paclitaxel-resistant A2780/Taxol cells were exposed to the chemotherapeutic agent cisplatin or paclitaxel in the presence or absence of transfected miR-130b. Cell viability assays were then performed using the Cell Counting Kit-8 (CCK-8) assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the messenger RNA (mRNA) and protein expression levels of glutathione S-transferase (GST)-π, multidrug resistance (MDR)1, or P-glycoprotein (P-gp). Following transfection, we found higher expression levels of miR-130b in A2780/Taxol cells than in A2780 cells (p < 0.05). Both A2780 and A2780/Taxol cells showed decreased sensitivity to paclitaxel and cisplatin compared with mock-transfected and negative control cancer cells (p < 0.05). The mRNA expression levels of MDR1 and GST-π (p < 0.05) and the protein expression levels of P-gp and GST-π were downregulated following miR-130b transfection in comparison to mock-transfected and negative control cancer cells. Our findings suggest that miRNA-130b may be involved in the development of drug resistance in ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;13:25–38. Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;13:25–38.
2.
go back to reference Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.CrossRef Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.CrossRef
3.
go back to reference Jordan SJ, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Breast-feeding and risk of epithelial ovarian cancer. Cancer Causes Control. 2012;23(6):919–27.CrossRef Jordan SJ, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Breast-feeding and risk of epithelial ovarian cancer. Cancer Causes Control. 2012;23(6):919–27.CrossRef
4.
go back to reference Ji K, Ye L, Mason MD, Jiang WG. The Kiss1/Kiss1R complex as a negative regulator of cell motility and cancer metastasis (review). Int J Mol Med. 2013;32(4):747–54.CrossRef Ji K, Ye L, Mason MD, Jiang WG. The Kiss1/Kiss1R complex as a negative regulator of cell motility and cancer metastasis (review). Int J Mol Med. 2013;32(4):747–54.CrossRef
5.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.CrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.CrossRef
6.
go back to reference Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.CrossRef Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.CrossRef
8.
go back to reference Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15.CrossRef Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15.CrossRef
9.
go back to reference Kenneth KWT, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol. 2008;28(17):5147–61.CrossRef Kenneth KWT, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol. 2008;28(17):5147–61.CrossRef
10.
go back to reference Dai Y, Xie CH, Neis JP, Fan CY, Vural E, Spring PM. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 2011;33(6):786–91.CrossRef Dai Y, Xie CH, Neis JP, Fan CY, Vural E, Spring PM. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 2011;33(6):786–91.CrossRef
11.
go back to reference Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15:1218–31.CrossRef Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15:1218–31.CrossRef
12.
go back to reference Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380:205–10.CrossRef Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380:205–10.CrossRef
13.
go back to reference Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JG, Garady C, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–9.CrossRef Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JG, Garady C, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–9.CrossRef
14.
go back to reference Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR. MicroRNA-503 suppresses proliferation and cell cycle progression of endometrioid endometrial cancer via negatively regulating cyclin D1. FEBS J. 2013;280(16):3768–79.CrossRef Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR. MicroRNA-503 suppresses proliferation and cell cycle progression of endometrioid endometrial cancer via negatively regulating cyclin D1. FEBS J. 2013;280(16):3768–79.CrossRef
15.
go back to reference Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.CrossRef Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.CrossRef
16.
go back to reference Farazi TA, Spitzer JI, Morozov P, Tuschl T. MiRNAs in human cancer. J Pathol. 2011;223:102–15.CrossRef Farazi TA, Spitzer JI, Morozov P, Tuschl T. MiRNAs in human cancer. J Pathol. 2011;223:102–15.CrossRef
17.
go back to reference Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;12:592–601.CrossRef Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;12:592–601.CrossRef
18.
go back to reference Sanchez-Diaz PC, Hsiao T-H, Chang JC, Yue D, Tan MC, Chen H-IH, et al. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One. 2013;8:e61622.CrossRef Sanchez-Diaz PC, Hsiao T-H, Chang JC, Yue D, Tan MC, Chen H-IH, et al. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One. 2013;8:e61622.CrossRef
19.
go back to reference Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6.CrossRef Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6.CrossRef
20.
go back to reference Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897.CrossRef Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897.CrossRef
21.
go back to reference Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther. 2011;131:18–32.CrossRef Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther. 2011;131:18–32.CrossRef
22.
go back to reference Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer. 2010;46(8):1456–63.CrossRef Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer. 2010;46(8):1456–63.CrossRef
23.
go back to reference Wang F, Xue X, Wei J, An Y, Yao J, Cai H, et al. Hsa-miR-520h down-regulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer. 2010;103:567–74.CrossRef Wang F, Xue X, Wei J, An Y, Yao J, Cai H, et al. Hsa-miR-520h down-regulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer. 2010;103:567–74.CrossRef
24.
go back to reference Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75:1374–9.CrossRef Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75:1374–9.CrossRef
25.
go back to reference Li H, Xu H, Shen H, Li H. MicroRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–8.CrossRef Li H, Xu H, Shen H, Li H. MicroRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–8.CrossRef
26.
go back to reference Li Z, Sha H, Wang J, Cai J, Xiao L, Lili Y, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119:125–30.CrossRef Li Z, Sha H, Wang J, Cai J, Xiao L, Lili Y, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119:125–30.CrossRef
27.
go back to reference Andorfer P, Rotheneder H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett. 2013;587:1504–9.CrossRef Andorfer P, Rotheneder H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett. 2013;587:1504–9.CrossRef
28.
go back to reference Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int. 2013;241763. Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int. 2013;241763.
29.
go back to reference Xing AY, Shi DB, Liu W, Chen X, Sun YL, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol. 2013;94:481–5.CrossRef Xing AY, Shi DB, Liu W, Chen X, Sun YL, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol. 2013;94:481–5.CrossRef
30.
go back to reference Popęda M, Płuciennik E, Bednarek AK. Proteins in cancer multidrug resistance. Postepy Hig Med Dosw. 2014;68:616–32.CrossRef Popęda M, Płuciennik E, Bednarek AK. Proteins in cancer multidrug resistance. Postepy Hig Med Dosw. 2014;68:616–32.CrossRef
31.
go back to reference Beeghly A, Katsaros D, Chen H, Fracchioli S, Zhang Y, Massobrio M, et al. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol Oncol. 2006;100(2):330–7.CrossRef Beeghly A, Katsaros D, Chen H, Fracchioli S, Zhang Y, Massobrio M, et al. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol Oncol. 2006;100(2):330–7.CrossRef
Metadata
Title
MicroRNA 130b enhances drug resistance in human ovarian cancer cells
Authors
Can Zong
Jun Wang
Tie-Mei Shi
Publication date
01-12-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2520-x

Other articles of this Issue 12/2014

Tumor Biology 12/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine