Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4

Authors: David Cervi, Brian Pak, Natalie A Venier, Linda M Sugar, Robert K Nam, Neil E Fleshner, Laurence H Klotz, Vasundara Venkateswaran

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Longstanding evidence implicates an inadequate diet as a key factor in the onset and progression of prostate cancer. The purpose herein was to discover, validate and characterize functional biomarkers of dietary supplementation capable of suppressing the course of prostate cancer in vivo.

Methods

The Lady transgenic mouse model that spontaneously develops prostate cancer received a diet supplemented with a micronutrient cocktail of vitamin E, selenium and lycopene ad libitum. A proteomic analysis was conducted to screen for serum biomarkers of this dietary supplementation. Candidate peptides were validated and identified by sequencing and analyzed for their presence within the prostates of all mice by immunohistochemistry.

Results

Dietary supplementation with the combined micronutrients significantly induced the expression of the megakaryocyte-specific inhibitor of angiogenesis, platelet factor-4 (P = 0.0025). This observation was made predominantly in mice lacking tumors and any manifestations associated with progressive disease beyond 37 weeks of life, at which time no survivors remained in the control group (P < 0.0001). While prostates of mice receiving standard chow were enlarged and burdened with poorly differentiated carcinoma, those of mice on the supplemented diet appeared normal. Immunohistochemical analysis revealed marked amplifications of both platelet binding and platelet factor-4 within the blood vessels of prostates from mice receiving micronutrients only.

Conclusion

We present unprecedented data whereby these combined micronutrients effectively promotes tumor dormancy in early prostate cancer, following initiation mutations that may drive the angiogenesis-dependent response of the tumor, by inducing platelet factor-4 expression and concentrating it at the tumor endothelium through enhanced platelet binding.
Appendix
Available only for authorised users
Literature
1.
go back to reference Colli JL, Amling CL: Exploring causes for declining prostate cancer mortality rates in the United States. Urol Oncol. 2008, 26 (6): 627-633.CrossRefPubMed Colli JL, Amling CL: Exploring causes for declining prostate cancer mortality rates in the United States. Urol Oncol. 2008, 26 (6): 627-633.CrossRefPubMed
2.
go back to reference Venkateswaran V, Klotz LH, Ramani M, Sugar LM, Jacob LE, Nam RK, Fleshner : A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the Lady transgenic model. Cancer Prevention Research. 2009, 2 (5): 473-483. 10.1158/1940-6207.CAPR-08-0124.CrossRefPubMed Venkateswaran V, Klotz LH, Ramani M, Sugar LM, Jacob LE, Nam RK, Fleshner : A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the Lady transgenic model. Cancer Prevention Research. 2009, 2 (5): 473-483. 10.1158/1940-6207.CAPR-08-0124.CrossRefPubMed
3.
go back to reference Das S: Vitamin E in the genesis and prevention of cancer. Acta Oncol. 1994, 33: 615-623. 10.3109/02841869409121771.CrossRefPubMed Das S: Vitamin E in the genesis and prevention of cancer. Acta Oncol. 1994, 33: 615-623. 10.3109/02841869409121771.CrossRefPubMed
4.
go back to reference elAttar TM, Lin HS: Vitamin E succinate potentiates the inhibitory effect of prostaglandins on oral squamous carcinoma cell proliferation. Prostagl, Leukotr & Essent FA. 1995, 52: 69-73. 10.1016/0952-3278(95)90099-3.CrossRef elAttar TM, Lin HS: Vitamin E succinate potentiates the inhibitory effect of prostaglandins on oral squamous carcinoma cell proliferation. Prostagl, Leukotr & Essent FA. 1995, 52: 69-73. 10.1016/0952-3278(95)90099-3.CrossRef
5.
go back to reference Schonberg S, Krokan HE: The inhibitory effects of conjugated dienoic derivatives of linoleic acid on the growth of human tumor cells lines is in part due to increased lipid peroxidation. Anticancer Res. 1995, 15: 1241-1246.PubMed Schonberg S, Krokan HE: The inhibitory effects of conjugated dienoic derivatives of linoleic acid on the growth of human tumor cells lines is in part due to increased lipid peroxidation. Anticancer Res. 1995, 15: 1241-1246.PubMed
6.
go back to reference Vasavi H, Thangaraju M, Sachdanandam P: Effects of alpha-tocopherol on lipid peroxidation and antioxidant system in fibrosarcoma bearing rats. Molec & Cell Biochem. 1994, 131: 125-129. 10.1007/BF00925948.CrossRef Vasavi H, Thangaraju M, Sachdanandam P: Effects of alpha-tocopherol on lipid peroxidation and antioxidant system in fibrosarcoma bearing rats. Molec & Cell Biochem. 1994, 131: 125-129. 10.1007/BF00925948.CrossRef
7.
go back to reference Venkateswaran V, Fleshner NE, Klotz LH: Modulation of cell proliferation and cell cycle regulators by vitamin E in human prostate carcinoma cell lines. J Urology. 2002, 168: 1578-1582. 10.1016/S0022-5347(05)64524-7.CrossRef Venkateswaran V, Fleshner NE, Klotz LH: Modulation of cell proliferation and cell cycle regulators by vitamin E in human prostate carcinoma cell lines. J Urology. 2002, 168: 1578-1582. 10.1016/S0022-5347(05)64524-7.CrossRef
8.
go back to reference Naithani R: Organoselenium compounds in cancer chemoprevention. Mini Rev Med Chem. 2008, 8: 657-668. 10.2174/138955708784567368.CrossRefPubMed Naithani R: Organoselenium compounds in cancer chemoprevention. Mini Rev Med Chem. 2008, 8: 657-668. 10.2174/138955708784567368.CrossRefPubMed
9.
go back to reference Zhang H, Dong Y, Zhao H, Brooks JD, Hawthorn L, Nowak K, Marshall JR, Gao AC, Ip C: Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer Cancer Genomics Proteomics. 2002, 62: 2540-2545. Zhang H, Dong Y, Zhao H, Brooks JD, Hawthorn L, Nowak K, Marshall JR, Gao AC, Ip C: Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer Cancer Genomics Proteomics. 2002, 62: 2540-2545.
10.
go back to reference Venkateswaran V, Klotz LH, Fleshner NE: Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res. 2002, 62: 2540-2545.PubMed Venkateswaran V, Klotz LH, Fleshner NE: Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res. 2002, 62: 2540-2545.PubMed
11.
go back to reference Basu A, Imrhan V: Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 2007, 61: 295-303. 10.1038/sj.ejcn.1602510.CrossRefPubMed Basu A, Imrhan V: Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 2007, 61: 295-303. 10.1038/sj.ejcn.1602510.CrossRefPubMed
12.
go back to reference Mossine VV, Chopra P, Mawhinney TP: Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 2008, 68: 4384-4391. 10.1158/0008-5472.CAN-08-0108.CrossRefPubMed Mossine VV, Chopra P, Mawhinney TP: Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 2008, 68: 4384-4391. 10.1158/0008-5472.CAN-08-0108.CrossRefPubMed
13.
go back to reference Venkateswaran V, Fleshner NE, Sugar LM, Klotz LH: Antioxidants block prostate cancer in Lady transgenic mice. Cancer Res. 2004, 64: 5891-5896. 10.1158/0008-5472.CAN-04-0690.CrossRefPubMed Venkateswaran V, Fleshner NE, Sugar LM, Klotz LH: Antioxidants block prostate cancer in Lady transgenic mice. Cancer Res. 2004, 64: 5891-5896. 10.1158/0008-5472.CAN-04-0690.CrossRefPubMed
14.
go back to reference Venkateswaran V, Fleshner NE, Klotz LH: Synergistic effect of vitamin E and selenium in human prostate cancer cell lines. Prostate Cancer and Prostatic Dis. 2004, 7: 54-56. 10.1038/sj.pcan.4500707.CrossRef Venkateswaran V, Fleshner NE, Klotz LH: Synergistic effect of vitamin E and selenium in human prostate cancer cell lines. Prostate Cancer and Prostatic Dis. 2004, 7: 54-56. 10.1038/sj.pcan.4500707.CrossRef
15.
go back to reference Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996, 68: 850-858. 10.1021/ac950914h.CrossRefPubMed Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996, 68: 850-858. 10.1021/ac950914h.CrossRefPubMed
16.
go back to reference Poncz M, Surrey S, LaRocco P, Weiss MJ, Rappaport EF, Conway TM, Schwartz E: Cloning and characterization of platelet factor 4 cDNA derived from a human erythroleukemic cell line. Blood. 1987, 69: 219-223.PubMed Poncz M, Surrey S, LaRocco P, Weiss MJ, Rappaport EF, Conway TM, Schwartz E: Cloning and characterization of platelet factor 4 cDNA derived from a human erythroleukemic cell line. Blood. 1987, 69: 219-223.PubMed
17.
go back to reference Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M: Structural and functional comparison of the genes for human platelet factor 4 and PF-4alt. Blood. 1990, 76: 336-344.PubMed Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M: Structural and functional comparison of the genes for human platelet factor 4 and PF-4alt. Blood. 1990, 76: 336-344.PubMed
18.
go back to reference Doi T, Greenberg SM, Rosenberg RD: Structure of the rat platelet factor 4 gene a marker for megakaryocyte differentiation. Mol Cell Biol. 1987, 7: 898-904.CrossRefPubMedPubMedCentral Doi T, Greenberg SM, Rosenberg RD: Structure of the rat platelet factor 4 gene a marker for megakaryocyte differentiation. Mol Cell Biol. 1987, 7: 898-904.CrossRefPubMedPubMedCentral
19.
go back to reference Cervi D, Yip T-T, Bhattacharya N, Podust VN, Peterson J, Abou-Slaybi A, Naumov GN, Bender E, Almog N, Italiano JE, Folkman J, Klement GL: Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 2008, 111: 1201-1207. 10.1182/blood-2007-04-084798.CrossRefPubMed Cervi D, Yip T-T, Bhattacharya N, Podust VN, Peterson J, Abou-Slaybi A, Naumov GN, Bender E, Almog N, Italiano JE, Folkman J, Klement GL: Platelet-associated PF-4 as a biomarker of early tumor growth. Blood. 2008, 111: 1201-1207. 10.1182/blood-2007-04-084798.CrossRefPubMed
20.
go back to reference Harper J, Moses MA: Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications. EXS. 2006, 96: 223-226.PubMed Harper J, Moses MA: Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications. EXS. 2006, 96: 223-226.PubMed
21.
go back to reference Nyberg P, Xie L, Kalluri R: Endogenous inhibitors of angiogenesis. Cancer Res. 2005, 15: 3967-3979. 10.1158/0008-5472.CAN-04-2427.CrossRef Nyberg P, Xie L, Kalluri R: Endogenous inhibitors of angiogenesis. Cancer Res. 2005, 15: 3967-3979. 10.1158/0008-5472.CAN-04-2427.CrossRef
22.
go back to reference Khan GN, Merajver SD: Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency. Curr Pharm Des. 2007, 13: 3584-3590. 10.2174/138161207782794202.CrossRefPubMed Khan GN, Merajver SD: Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency. Curr Pharm Des. 2007, 13: 3584-3590. 10.2174/138161207782794202.CrossRefPubMed
23.
go back to reference Mousa SA, Bharali DJ, Armstrong D: From nutraceuticals to pharmaceuticals to nanopharmaceuticals: a case study in angiogenesis modulation during oxidative stress. Mol Biotechnol. 2007, 37: 72-80. 10.1007/s12033-007-0064-7.CrossRefPubMed Mousa SA, Bharali DJ, Armstrong D: From nutraceuticals to pharmaceuticals to nanopharmaceuticals: a case study in angiogenesis modulation during oxidative stress. Mol Biotechnol. 2007, 37: 72-80. 10.1007/s12033-007-0064-7.CrossRefPubMed
Metadata
Title
Micronutrients attenuate progression of prostate cancer by elevating the endogenous inhibitor of angiogenesis, Platelet Factor-4
Authors
David Cervi
Brian Pak
Natalie A Venier
Linda M Sugar
Robert K Nam
Neil E Fleshner
Laurence H Klotz
Vasundara Venkateswaran
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-258

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine