Skip to main content
Top
Published in: Oral and Maxillofacial Surgery 3/2022

18-09-2021 | Original Article

Microcomputed tomographic analysis of bone microarchitecture after sinus augmentation with hyaluronic matrix: a case–control study

Authors: Ezgi Gurbuz, Erhan Dursun, Alper Vatansever, Feriha Caglayan

Published in: Oral and Maxillofacial Surgery | Issue 3/2022

Login to get access

Abstract

Background

The aim of this study was to analyze trabecular microarchitecture of augmented sinuses with hyaluronic matrix and xenograft by microcomputed tomography, and to investigate whether hyaluronic matrix has an effect on the newly formed bone quality.

Materials and methods

Thirteen patients undergoing maxillary sinus augmentation were included in this split-mouth study. Right and left sinus sites were randomly assigned to test and control group. In test group, the sinus was grafted with hyaluronic matrix and xenograft; in control group, only with xenograft. Four months after augmentation, bone samples were harvested during implant placement and analyzed for the following trabecular microarchitecture parameters using microcomputed tomography: bone volume (BV), total volume (TV), bone volume fraction (BV/TV), bone surface (BS), specific bone surface (BS/BV), bone surface density (BS/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular pattern factor (Tb.Pf), and fractal dimension (FD).

Results

There was statistically significant difference only for BS/TV parameter between two groups. BS/TV was higher in hyaluronic matrix group compared with control group.

Conclusions

Addition of hyaluronic matrix to xenograft may enhance bone quality in terms of bone surface density. However, more research investigating the microstructural variation of augmented sinuses is needed with a greater sample.
Literature
1.
go back to reference Wallace SS, Tarnow DP, Froum SJ, Cho S-C, Zadeh HH, Stoupel J et al (2012) Maxillary sinus elevation by lateral window approach: evolution of technology and technique. J Evid Based Dent Pract 12:161–171PubMedCrossRef Wallace SS, Tarnow DP, Froum SJ, Cho S-C, Zadeh HH, Stoupel J et al (2012) Maxillary sinus elevation by lateral window approach: evolution of technology and technique. J Evid Based Dent Pract 12:161–171PubMedCrossRef
2.
go back to reference Moy PK, Lundgren S, Holmes RE (1993) Maxillary sinus augmentation: histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J Oral Maxillofac Surg 51:857–862PubMedCrossRef Moy PK, Lundgren S, Holmes RE (1993) Maxillary sinus augmentation: histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J Oral Maxillofac Surg 51:857–862PubMedCrossRef
3.
go back to reference Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G et al (2006) Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent 15:197–207PubMedCrossRef Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G et al (2006) Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent 15:197–207PubMedCrossRef
4.
go back to reference Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M et al (2016) Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig 20:2259–2265PubMedCrossRef Miron RJ, Zhang Q, Sculean A, Buser D, Pippenger BE, Dard M et al (2016) Osteoinductive potential of 4 commonly employed bone grafts. Clin Oral Investig 20:2259–2265PubMedCrossRef
5.
go back to reference Froum SJ, Wallace S, Cho S-C, Rosenberg E, Froum S, Schoor R et al (2013) A histomorphometric comparison of Bio-Oss alone versus Bio-Oss and platelet-derived growth factor for sinus augmentation: a postsurgical assessment. Int J Periodontics Restorative Dent 33:268–279 Froum SJ, Wallace S, Cho S-C, Rosenberg E, Froum S, Schoor R et al (2013) A histomorphometric comparison of Bio-Oss alone versus Bio-Oss and platelet-derived growth factor for sinus augmentation: a postsurgical assessment. Int J Periodontics Restorative Dent 33:268–279
6.
go back to reference Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J et al (2016) Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 104:1560–1569PubMedCrossRef Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J et al (2016) Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 104:1560–1569PubMedCrossRef
8.
go back to reference Sasaki T, Watanabe C (1995) Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 16:9–15PubMedCrossRef Sasaki T, Watanabe C (1995) Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 16:9–15PubMedCrossRef
9.
go back to reference Dogan E, Dursun E, Tosun E, Bilgic E, Akman AC, Orhan K et al (2017) Evaluation of hyaluronic matrix efficacy in sinus augmentation: a randomized-controlled histomorphometric and micro-computed tomography analysis. Int J Oral Maxillofac Surg 46:931–937PubMedCrossRef Dogan E, Dursun E, Tosun E, Bilgic E, Akman AC, Orhan K et al (2017) Evaluation of hyaluronic matrix efficacy in sinus augmentation: a randomized-controlled histomorphometric and micro-computed tomography analysis. Int J Oral Maxillofac Surg 46:931–937PubMedCrossRef
10.
go back to reference Emam H, Beheiri G, Elsalanty M, Sharawy M (2011) Microcomputed tomographic and histologic analysis of anorganic bone matrix coupled with cell-binding peptide suspended in sodium hyaluronate carrier after sinus augmentation: a clinical study. Int J Oral Maxillofac Implants 26:561–570PubMed Emam H, Beheiri G, Elsalanty M, Sharawy M (2011) Microcomputed tomographic and histologic analysis of anorganic bone matrix coupled with cell-binding peptide suspended in sodium hyaluronate carrier after sinus augmentation: a clinical study. Int J Oral Maxillofac Implants 26:561–570PubMed
11.
go back to reference Compston J (2006) Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol 50:579–585PubMedCrossRef Compston J (2006) Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol 50:579–585PubMedCrossRef
12.
13.
go back to reference Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporos Int 14:89–99CrossRef Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporos Int 14:89–99CrossRef
14.
go back to reference Iwaniec UT, Wronski TJ, Turner RT (2008) Histological analysis of bone. Methods Mol Biol 447:325–341PubMedCrossRef Iwaniec UT, Wronski TJ, Turner RT (2008) Histological analysis of bone. Methods Mol Biol 447:325–341PubMedCrossRef
15.
go back to reference Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedCrossRef Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11PubMedCrossRef
16.
go back to reference Kühl S, Götz H, Hansen T, Kreisler M, Behneke A, Heil U et al (2010) Three-dimensional analysis of bone formation after maxillary sinus augmentation by means of microcomputed tomography: a pilot study. Int J Oral Maxillofac Implants 25:930–938PubMed Kühl S, Götz H, Hansen T, Kreisler M, Behneke A, Heil U et al (2010) Three-dimensional analysis of bone formation after maxillary sinus augmentation by means of microcomputed tomography: a pilot study. Int J Oral Maxillofac Implants 25:930–938PubMed
17.
go back to reference Rickham PP (1964) Human Experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br Med J. 2:177PubMedCrossRef Rickham PP (1964) Human Experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br Med J. 2:177PubMedCrossRef
18.
go back to reference Palacios R (2013) Post-trial access and the new version of the Declaration of Helsinki. Colomb Med (Cali) 44:206–207CrossRef Palacios R (2013) Post-trial access and the new version of the Declaration of Helsinki. Colomb Med (Cali) 44:206–207CrossRef
19.
20.
go back to reference Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRef
21.
go back to reference Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25:1468–1486PubMedCrossRef Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25:1468–1486PubMedCrossRef
22.
go back to reference Ulm C, Kneissel M, Schedle A, Solar P, Matejka M, Schneider B et al (1999) Characteristic features of trabecular bone in edentulous maxillae. Clin Oral Implants Res 10:459–467PubMedCrossRef Ulm C, Kneissel M, Schedle A, Solar P, Matejka M, Schneider B et al (1999) Characteristic features of trabecular bone in edentulous maxillae. Clin Oral Implants Res 10:459–467PubMedCrossRef
23.
go back to reference Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D (2014) Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res 25:941–945PubMedCrossRef Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D (2014) Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res 25:941–945PubMedCrossRef
24.
go back to reference Pereira R, Menezes J, Bonardi J, Griza G, Okamoto R, Hochuli-Vieira E (2018) Comparative study of volumetric changes and trabecular microarchitecture in human maxillary sinus bone augmentation with bioactive glass and autogenous bone graft: a prospective and randomized assessment. Int J Oral Maxillofac Surg 47:665–671PubMedCrossRef Pereira R, Menezes J, Bonardi J, Griza G, Okamoto R, Hochuli-Vieira E (2018) Comparative study of volumetric changes and trabecular microarchitecture in human maxillary sinus bone augmentation with bioactive glass and autogenous bone graft: a prospective and randomized assessment. Int J Oral Maxillofac Surg 47:665–671PubMedCrossRef
25.
go back to reference Monje A, Monje F, González-García R, Suarez F, Galindo-Moreno P, García-Nogales A et al (2015) Influence of atrophic posterior maxilla ridge height on bone density and microarchitecture. Clin Implant Dent Relat Res 17:111–119PubMedCrossRef Monje A, Monje F, González-García R, Suarez F, Galindo-Moreno P, García-Nogales A et al (2015) Influence of atrophic posterior maxilla ridge height on bone density and microarchitecture. Clin Implant Dent Relat Res 17:111–119PubMedCrossRef
26.
go back to reference Dursun E, Dursun CK, Eratalay K, Orhan K, Celik HH, Tözüm TF (2015) Do porous titanium granule grafts affect bone microarchitecture at augmented maxillary sinus sites? a pilot split-mouth human study. Implant Dent 24:427–433PubMedCrossRef Dursun E, Dursun CK, Eratalay K, Orhan K, Celik HH, Tözüm TF (2015) Do porous titanium granule grafts affect bone microarchitecture at augmented maxillary sinus sites? a pilot split-mouth human study. Implant Dent 24:427–433PubMedCrossRef
27.
go back to reference Huang HL, Chen MY, Hsu JT, Li YF, Chang CH, Chen KT (2012) Three-dimensional bone structure and bone mineral density evaluations of autogenous bone graft after sinus augmentation: a microcomputed tomography analysis. Clin Oral Implants Res 23:1098–1103PubMedCrossRef Huang HL, Chen MY, Hsu JT, Li YF, Chang CH, Chen KT (2012) Three-dimensional bone structure and bone mineral density evaluations of autogenous bone graft after sinus augmentation: a microcomputed tomography analysis. Clin Oral Implants Res 23:1098–1103PubMedCrossRef
28.
go back to reference Márton K, Tamás SB, Orsolya N, Béla C, Ferenc D, Péter N et al (2018) Microarchitecture of the augmented bone following sinus elevation with an albumin impregnated demineralized freeze-dried bone allograft (BoneAlbumin) versus anorganic bovine bone mineral: a randomized prospective clinical, histomorphometric, and micro-computed tomography study. Materials 11:202PubMedCentralCrossRef Márton K, Tamás SB, Orsolya N, Béla C, Ferenc D, Péter N et al (2018) Microarchitecture of the augmented bone following sinus elevation with an albumin impregnated demineralized freeze-dried bone allograft (BoneAlbumin) versus anorganic bovine bone mineral: a randomized prospective clinical, histomorphometric, and micro-computed tomography study. Materials 11:202PubMedCentralCrossRef
29.
go back to reference Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A et al (2011) Sinus floor augmentation using large (1–2 mm) or small (0.25–1 mm) bovine bone mineral particles: a prospective, intra‐individual controlled clinical, micro‐computerized tomography and histomorphometric study. Clin Oral Implants Res. 22:473–480PubMedCrossRef Chackartchi T, Iezzi G, Goldstein M, Klinger A, Soskolne A, Piattelli A et al (2011) Sinus floor augmentation using large (1–2 mm) or small (0.25–1 mm) bovine bone mineral particles: a prospective, intra‐individual controlled clinical, micro‐computerized tomography and histomorphometric study. Clin Oral Implants Res. 22:473–480PubMedCrossRef
30.
go back to reference Caubet J, Ramis JM, Ramos-Murguialday M, Morey MÁ, Monjo M (2015) Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss® or BoneCeramic®. Clin Oral Implants Res 26:727–735PubMedCrossRef Caubet J, Ramis JM, Ramos-Murguialday M, Morey MÁ, Monjo M (2015) Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss® or BoneCeramic®. Clin Oral Implants Res 26:727–735PubMedCrossRef
31.
go back to reference Chopra PM, Johnson M, Nagy TR, Lemons JE (2009) Micro-computed tomographic analysis of bone healing subsequent to graft placement. J Biomed Mater Res B Appl Biomater 88:611–618PubMedCrossRef Chopra PM, Johnson M, Nagy TR, Lemons JE (2009) Micro-computed tomographic analysis of bone healing subsequent to graft placement. J Biomed Mater Res B Appl Biomater 88:611–618PubMedCrossRef
32.
go back to reference Rebaudi A, Maltoni AA, Pretto M, Benedicenti S (2010) Sinus grafting with magnesium-enriched bioceramic granules and autogenous bone: a microcomputed tomographic evaluation of 11 patients. Int J Periodontics Restorative Dent 30:53–61PubMed Rebaudi A, Maltoni AA, Pretto M, Benedicenti S (2010) Sinus grafting with magnesium-enriched bioceramic granules and autogenous bone: a microcomputed tomographic evaluation of 11 patients. Int J Periodontics Restorative Dent 30:53–61PubMed
33.
go back to reference Wang F, Zhou W, Monje A, Huang W, Wang Y, Wu Y (2017) Influence of healing period upon bone turn over on maxillary sinus floor augmentation grafted solely with deproteinized bovine bone mineral: a prospective human histological and clinical trial. Clin Implant Dent Relat Res 19:341–350PubMedCrossRef Wang F, Zhou W, Monje A, Huang W, Wang Y, Wu Y (2017) Influence of healing period upon bone turn over on maxillary sinus floor augmentation grafted solely with deproteinized bovine bone mineral: a prospective human histological and clinical trial. Clin Implant Dent Relat Res 19:341–350PubMedCrossRef
34.
go back to reference Pilloni A, Bernard GW (1992) Low molecular weight hyaluronic acid increases osteogenesis in vitro. J Dent Res. 71:574(IADR abstract #471} Pilloni A, Bernard GW (1992) Low molecular weight hyaluronic acid increases osteogenesis in vitro. J Dent Res. 71:574(IADR abstract #471}
35.
go back to reference Huang L, Cheng Y, Koo P, Lee K, Qin L, Cheng J et al (2003) The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A 66:880–884PubMedCrossRef Huang L, Cheng Y, Koo P, Lee K, Qin L, Cheng J et al (2003) The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A 66:880–884PubMedCrossRef
36.
go back to reference Stiller M, Kluk E, Bohner M, Lopez-Heredia MA, Müller-Mai C, Knabe C (2014) Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus floor augmentation in humans. Biomaterials 35:3154–3163PubMedCrossRef Stiller M, Kluk E, Bohner M, Lopez-Heredia MA, Müller-Mai C, Knabe C (2014) Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus floor augmentation in humans. Biomaterials 35:3154–3163PubMedCrossRef
37.
go back to reference Raines AL, Sunwoo M, Gertzman AA, Thacker K, Guldberg RE, Schwartz Z et al (2011) Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. J Biomed Mater Res A 96:575–583PubMedPubMedCentralCrossRef Raines AL, Sunwoo M, Gertzman AA, Thacker K, Guldberg RE, Schwartz Z et al (2011) Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. J Biomed Mater Res A 96:575–583PubMedPubMedCentralCrossRef
38.
go back to reference Jaffin RA, Berman CL (1991) The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 62:2–4PubMedCrossRef Jaffin RA, Berman CL (1991) The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 62:2–4PubMedCrossRef
Metadata
Title
Microcomputed tomographic analysis of bone microarchitecture after sinus augmentation with hyaluronic matrix: a case–control study
Authors
Ezgi Gurbuz
Erhan Dursun
Alper Vatansever
Feriha Caglayan
Publication date
18-09-2021
Publisher
Springer Berlin Heidelberg
Published in
Oral and Maxillofacial Surgery / Issue 3/2022
Print ISSN: 1865-1550
Electronic ISSN: 1865-1569
DOI
https://doi.org/10.1007/s10006-021-01002-5

Other articles of this Issue 3/2022

Oral and Maxillofacial Surgery 3/2022 Go to the issue
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare