Skip to main content
Top
Published in: Translational Stroke Research 1/2012

01-07-2012 | Original Article

Micro-Computed Tomography for Hemorrhage Disruption of Mouse Brain Vasculature

Authors: Bohua Xie, Peng Miao, Yuhao Sun, Yongting Wang, Guo-Yuan Yang

Published in: Translational Stroke Research | Special Issue 1/2012

Login to get access

Abstract

The use of genetic engineering to develop important neuropathological mouse models has made cerebrovascular imaging essential for the investigation of numerous brain disorders, especially cerebrovascular disorders, such as aneurysms, arteriovenous malformations, and ischemic and hemorrhagic stroke. New laboratory-based X-ray microimagers exist that provide easy access, reliable operation, and performance previously found only in synchrotron-based instruments. Here, we reported a novel approach using such a system to detect intracerebral hemorrhage and resultant cerebrovascular pathology. Adult male C57BL/6 mice (n = 12) underwent 30 μl autologous blood injection into the right basal ganglia region. After sacrificing the animals and vascular perfusion with Microfil® MV-122 Yellow to opacify vascular and microvascular structures, the brain was post-fixed and partially hydrated for 3D imaging with a MicroXCT-400® at 30 KeV and 2-μm resolution. Tomographic reconstruction of high-resolution microimages was accomplished with Amira® software. High-quality 3D images included cerebrocortical microvessels, the circle of Willis, the sagittal sinus, transverse sinus, and other arterial and venous systems. In the ipsilateral hemisphere, there clearly were early-stage vasodilatation and later-stage neovascularization. Very high-resolution, laboratory-based, X-ray micro-CT contrast imaging can accomplish sensitive quantifications of normal and pathological small cerebrovascular changes, especially in hemorrhagic stroke and subsequent hemorrhage-induced neovascularization.
Literature
1.
go back to reference Elliott J, Smith M. The acute management of intracerebral hemorrhage: a clinical review. Anesth Analg. 2010;110(5):1419–27. Epub 2010/03/25.PubMedCrossRef Elliott J, Smith M. The acute management of intracerebral hemorrhage: a clinical review. Anesth Analg. 2010;110(5):1419–27. Epub 2010/03/25.PubMedCrossRef
2.
go back to reference Woo D, Broderick JP. Spontaneous intracerebral hemorrhage: epidemiology and clinical presentation. Neurosurg Clin N Am. 2002;13(3):265–79. v. Epub 2002/12/19.PubMedCrossRef Woo D, Broderick JP. Spontaneous intracerebral hemorrhage: epidemiology and clinical presentation. Neurosurg Clin N Am. 2002;13(3):265–79. v. Epub 2002/12/19.PubMedCrossRef
3.
go back to reference Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97. Epub 2005/02/01.PubMed Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97. Epub 2005/02/01.PubMed
4.
go back to reference Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke. 2007;38(2 Suppl):763–7. Epub 2007/01/31.PubMedCrossRef Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke. 2007;38(2 Suppl):763–7. Epub 2007/01/31.PubMedCrossRef
5.
go back to reference Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85. Epub 2005/02/25.PubMedCrossRef Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85. Epub 2005/02/25.PubMedCrossRef
6.
go back to reference Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. Epub 2005/12/20.PubMedCrossRef Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. Epub 2005/12/20.PubMedCrossRef
7.
go back to reference Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52. Epub 2003/06/11.PubMedCrossRef Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52. Epub 2003/06/11.PubMedCrossRef
8.
go back to reference Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol. 2010;176(3):1193–202. Epub 2010/01/30.PubMedCrossRef Xue M, Mikliaeva EI, Casha S, Zygun D, Demchuk A, Yong VW. Improving outcomes of neuroprotection by minocycline: guides from cell culture and intracerebral hemorrhage in mice. Am J Pathol. 2010;176(3):1193–202. Epub 2010/01/30.PubMedCrossRef
9.
go back to reference Hwang BY, Appelboom G, Ayer A, Kellner CP, Kotchetkov IS, Gigante PR, et al. Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc Dis. 2011;31(3):211–22. Epub 2010/12/24.PubMedCrossRef Hwang BY, Appelboom G, Ayer A, Kellner CP, Kotchetkov IS, Gigante PR, et al. Advances in neuroprotective strategies: potential therapies for intracerebral hemorrhage. Cerebrovasc Dis. 2011;31(3):211–22. Epub 2010/12/24.PubMedCrossRef
10.
go back to reference Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30(6):1167–73. Epub 1999/06/04.PubMedCrossRef Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30(6):1167–73. Epub 1999/06/04.PubMedCrossRef
11.
go back to reference Walker E, Shen F, Young W, Su H. Cerebrovascular casting of the adult mouse for 3D imaging and morphological analysis. J Vis Exp. 2011;(57):e2958. Walker E, Shen F, Young W, Su H. Cerebrovascular casting of the adult mouse for 3D imaging and morphological analysis. J Vis Exp. 2011;(57):e2958.
12.
go back to reference Plouraboué F, Cloetens P, Fonta C, Steyer A, Lauwers F, MARC-VERGNES JP. X-ray high-resolution vascular network imaging. J Microsc. 2004;215(2):139–48.PubMedCrossRef Plouraboué F, Cloetens P, Fonta C, Steyer A, Lauwers F, MARC-VERGNES JP. X-ray high-resolution vascular network imaging. J Microsc. 2004;215(2):139–48.PubMedCrossRef
13.
go back to reference Liao PS, Chen TS, Chung PC. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2001;17(5):713–28. Liao PS, Chen TS, Chung PC. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2001;17(5):713–28.
14.
go back to reference Pathak AP, Kim E, Zhang J, Jones MV. Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS One. 2011;6(7):e22643.PubMedCrossRef Pathak AP, Kim E, Zhang J, Jones MV. Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS One. 2011;6(7):e22643.PubMedCrossRef
15.
go back to reference de Crespigny A, Bou-Reslan H, Nishimura MC, Phillips H, Carano RAD, D'Arceuil HE. 3D micro-CT imaging of the postmortem brain. J Neurosci Methods. 2008;171(2):207–13.PubMedCrossRef de Crespigny A, Bou-Reslan H, Nishimura MC, Phillips H, Carano RAD, D'Arceuil HE. 3D micro-CT imaging of the postmortem brain. J Neurosci Methods. 2008;171(2):207–13.PubMedCrossRef
16.
go back to reference Beckmann F, Heise K, Kölsch B, Bonse U, Rajewsky M, Bartscher M, et al. Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography. Biophys J. 1999;76(1):98–102.PubMedCrossRef Beckmann F, Heise K, Kölsch B, Bonse U, Rajewsky M, Bartscher M, et al. Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography. Biophys J. 1999;76(1):98–102.PubMedCrossRef
17.
go back to reference Risser L, Plouraboué F, Cloetens P, Fonta C. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. Int J Dev Neurosci. 2009;27(2):185–96.PubMedCrossRef Risser L, Plouraboué F, Cloetens P, Fonta C. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. Int J Dev Neurosci. 2009;27(2):185–96.PubMedCrossRef
18.
go back to reference Metscher B. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11.PubMedCrossRef Metscher B. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11.PubMedCrossRef
19.
go back to reference Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238(3):632–40.PubMedCrossRef Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238(3):632–40.PubMedCrossRef
20.
go back to reference Kim JS, Min J, Recknagel AK, Riccio M, Butcher JT. Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2010;294:1–10.CrossRef Kim JS, Min J, Recknagel AK, Riccio M, Butcher JT. Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2010;294:1–10.CrossRef
21.
go back to reference Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 2002;20(8):S34–S9.CrossRef Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 2002;20(8):S34–S9.CrossRef
22.
go back to reference Simopoulos DN, Gibbons SJ, Malysz J, Szurszewski JH, Farrugia G, Ritman EL, et al. Corporeal structural and vascular micro architecture with X-ray micro computerized tomography in normal and diabetic rabbits: histopathological correlation. J Urol. 2001;165(5):1776–82.PubMedCrossRef Simopoulos DN, Gibbons SJ, Malysz J, Szurszewski JH, Farrugia G, Ritman EL, et al. Corporeal structural and vascular micro architecture with X-ray micro computerized tomography in normal and diabetic rabbits: histopathological correlation. J Urol. 2001;165(5):1776–82.PubMedCrossRef
23.
go back to reference Wilson SH, Herrmann J, Lerman LO, Holmes DR, Napoli C, Ritman EL, et al. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation. 2002;105(4):415–8.PubMedCrossRef Wilson SH, Herrmann J, Lerman LO, Holmes DR, Napoli C, Ritman EL, et al. Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation. 2002;105(4):415–8.PubMedCrossRef
24.
go back to reference Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81(1):93–102.PubMedCrossRef Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81(1):93–102.PubMedCrossRef
25.
go back to reference Lee TC, Kashyap RL, Chu CN. Building skeleton models via 3-D medial surface/axis thinning algorithms. CVGIP: Graphical Model and Image Processing. 1994;56(6):462–78.CrossRef Lee TC, Kashyap RL, Chu CN. Building skeleton models via 3-D medial surface/axis thinning algorithms. CVGIP: Graphical Model and Image Processing. 1994;56(6):462–78.CrossRef
26.
go back to reference Marxen M, Thornton MM, Chiarot CB, Klement G, Koprivnikar J, Sled JG, et al. MicroCT scanner performance and considerations for vascular specimen imaging. Medical Ph1ysics. 2004;31:305.CrossRef Marxen M, Thornton MM, Chiarot CB, Klement G, Koprivnikar J, Sled JG, et al. MicroCT scanner performance and considerations for vascular specimen imaging. Medical Ph1ysics. 2004;31:305.CrossRef
27.
go back to reference Bolland BJ, Kanczler JM, Dunlop DG, Oreffo RO. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone. 2008;43(1):195–202. Epub 2008/04/22.PubMedCrossRef Bolland BJ, Kanczler JM, Dunlop DG, Oreffo RO. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone. 2008;43(1):195–202. Epub 2008/04/22.PubMedCrossRef
28.
go back to reference Chu M, Hu X, Lu S, Gan Y, Li P, Guo Y, et al. Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Front Biosci (Elite Ed). 2012;4:1926. Chu M, Hu X, Lu S, Gan Y, Li P, Guo Y, et al. Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Front Biosci (Elite Ed). 2012;4:1926.
Metadata
Title
Micro-Computed Tomography for Hemorrhage Disruption of Mouse Brain Vasculature
Authors
Bohua Xie
Peng Miao
Yuhao Sun
Yongting Wang
Guo-Yuan Yang
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
Translational Stroke Research / Issue Special Issue 1/2012
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0164-y

Other articles of this Special Issue 1/2012

Translational Stroke Research 1/2012 Go to the issue