Skip to main content
Top
Published in: Calcified Tissue International 3/2007

01-09-2007

Mice Rendered Severely Deficient in Megakaryocytes through Targeted Gene Deletion of the Thrombopoietin Receptor c-Mpl Have a Normal Skeletal Phenotype

Authors: Mark J. Perry, Katrina A. Redding, Warren S. Alexander, Jonathan H. Tobias

Published in: Calcified Tissue International | Issue 3/2007

Login to get access

Abstract

To explore whether a functional relationship exists between megakaryocytes and the cellular processes responsible for bone formation, we examined if Mpl −/− mice, which are severely megakaryocyte-deficient through c-Mpl gene deletion, have an abnormal skeletal phenotype compared to Mpl +/− and wild-type littermates. We also analyzed whether the osteogenic response to high-dose estrogen treatment is altered in Mpl −/− mice. Megakaryocyte numbers and skeletal indices were compared between Mpl −/− mice and littermate Mpl +/− and wild-type 12-week-old mice (six per group). Dual-energy X-ray absorbtiometry of whole body, excised tibias, and femurs was performed. Histomorphometric analyses of the proximal metaphysis and mid-diaphysis were carried out on longitudinal and transverse sections, respectively. Histomorphometry was performed on the proximal tibial metaphysis of four Mpl −/− and four wild-type mice following high-dose estrogen treatment (0.5 mg/animal/week) for 4 weeks. Mpl −/− mice had 10% the megakaryocyte number of Mpl +/− and wild-type littermates. Bone mineral density values in Mpl −/− mice were identical to those in Mpl +/− and wild-type mice for whole body, femur, and tibia. Histomorphometric analysis demonstrated that cancellous and cortical tibial bone parameters were similar across all genotypes. The osteogenic response to estrogen treatment was indistinguishable between Mpl −/− and wild-type mice. We found that mice severely deficient in megakaryocytes have a normal skeletal phenotype. Additionally, the deficiency did not diminish the osteogenic marrow response to high-dose estrogen treatment. These results represent the first in vivo evidence that severe megakaryocyte deficiency does not affect bone formation, suggesting that this process is not dependent on normal megakaryocyte number.
Literature
1.
go back to reference Breton-Gorius J, Clezardin P, Guichard J, Debili N, Malaval L, Vainchenker W, Cramer EM, Delmas PD (1992) Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood 79:936–941PubMed Breton-Gorius J, Clezardin P, Guichard J, Debili N, Malaval L, Vainchenker W, Cramer EM, Delmas PD (1992) Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood 79:936–941PubMed
2.
go back to reference Kelm RJ Jr, Hair GA, Mann KG, Grant BW (1992) Characterization of human osteoblast and megakaryocyte-derived osteonectin (SPARC). Blood 80:3112–3119PubMed Kelm RJ Jr, Hair GA, Mann KG, Grant BW (1992) Characterization of human osteoblast and megakaryocyte-derived osteonectin (SPARC). Blood 80:3112–3119PubMed
3.
go back to reference Chenu C, Delmas PD (1992) Platelets contribute to circulating levels of bone sialoprotein in human. J Bone Miner Res 7:47–54PubMedCrossRef Chenu C, Delmas PD (1992) Platelets contribute to circulating levels of bone sialoprotein in human. J Bone Miner Res 7:47–54PubMedCrossRef
4.
go back to reference Frank JD, Balena R, Masarachia P, Seedor JG, Cartwright ME (1993) The effects of three different mineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochemistry 99:295–301PubMedCrossRef Frank JD, Balena R, Masarachia P, Seedor JG, Cartwright ME (1993) The effects of three different mineralization agents on osteopontin localization in adult rat bone using immunohistochemistry. Histochemistry 99:295–301PubMedCrossRef
5.
go back to reference Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135:929–937PubMedCrossRef Thiede MA, Smock SL, Petersen DN, Grasser WA, Thompson DD, Nishimoto SK (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135:929–937PubMedCrossRef
6.
go back to reference Wickenhauser C, Hillienhof A, Jungheim K, Lorenzen J, Ruskowski H, Hansmann ML, Thiele J, Fischer R (1995) Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9:310–315PubMed Wickenhauser C, Hillienhof A, Jungheim K, Lorenzen J, Ruskowski H, Hansmann ML, Thiele J, Fischer R (1995) Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9:310–315PubMed
7.
go back to reference Yan XQ, Lacey D, Hill D, Chen Y, Fetcher F, Hawley RG, McNiece IK (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88:402–409PubMed Yan XQ, Lacey D, Hill D, Chen Y, Fetcher F, Hawley RG, McNiece IK (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88:402–409PubMed
8.
go back to reference Bord S, Vedi S, Beaven SR, Horner A, Compston JE (2000) Megakaryocyte population in human bone marrow increases with estrogen treatment: a role in bone remodelling? Bone 27:397–401PubMedCrossRef Bord S, Vedi S, Beaven SR, Horner A, Compston JE (2000) Megakaryocyte population in human bone marrow increases with estrogen treatment: a role in bone remodelling? Bone 27:397–401PubMedCrossRef
9.
go back to reference Sipe JB, Zhang J, Waits C, Skikne B, Garimella R, Anderson HC (2004) Localization of bone morphogenetic proteins (BMPs)-2, and -6 within megakaryocyes and platelets. Bone 35:1316–1322PubMedCrossRef Sipe JB, Zhang J, Waits C, Skikne B, Garimella R, Anderson HC (2004) Localization of bone morphogenetic proteins (BMPs)-2, and -6 within megakaryocyes and platelets. Bone 35:1316–1322PubMedCrossRef
10.
go back to reference Garimella R, Kacena MA, Tague SE, Wang J, Horowitz MC, Anderson HC (2007) Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATA-1low mice: a possible role in osteosclerosis. J Histochem Cytochem 55:745–752PubMedCrossRef Garimella R, Kacena MA, Tague SE, Wang J, Horowitz MC, Anderson HC (2007) Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATA-1low mice: a possible role in osteosclerosis. J Histochem Cytochem 55:745–752PubMedCrossRef
11.
go back to reference Miao D, Murant S, Scutt, Genever P, Scutt A (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817 Miao D, Murant S, Scutt, Genever P, Scutt A (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817
12.
go back to reference Beeton CA, Bord S, Ireland D, Compston JE (2006) Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone 39:985–990PubMedCrossRef Beeton CA, Bord S, Ireland D, Compston JE (2006) Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone 39:985–990PubMedCrossRef
13.
go back to reference Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39:991–999PubMedCrossRef Kacena MA, Nelson T, Clough ME, Lee SK, Lorenzo JA, Gundberg CM, Horowitz MC (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39:991–999PubMedCrossRef
14.
go back to reference Chagraoui H, Sabri S, Capron C, Villeval JL, Vainchenker W, Wendling F (2003) Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol 31:1081–1088PubMedCrossRef Chagraoui H, Sabri S, Capron C, Villeval JL, Vainchenker W, Wendling F (2003) Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol 31:1081–1088PubMedCrossRef
15.
go back to reference Bord S, Frith E, Ireland DC, Scott MA, Craig JIO, Compston JE (2004) Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol 126:244–251PubMedCrossRef Bord S, Frith E, Ireland DC, Scott MA, Craig JIO, Compston JE (2004) Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol 126:244–251PubMedCrossRef
16.
go back to reference Yan XQ, Lacey D, Fletcher F, Hartley C, McElroy P, Sun Y, Xia M, Mu S, Saris C, Hill D, Hawley RG, McNiece IK (1995) Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 86:4025–4033PubMed Yan XQ, Lacey D, Fletcher F, Hartley C, McElroy P, Sun Y, Xia M, Mu S, Saris C, Hill D, Hawley RG, McNiece IK (1995) Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 86:4025–4033PubMed
17.
go back to reference Villeval JL, Cohen-Solal K, Tulliez M, Giraudier S, Guichard J, Burstein SA, Cramer EM, Vainchenker W, Wendling F (1997) High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 90:4369–4383PubMed Villeval JL, Cohen-Solal K, Tulliez M, Giraudier S, Guichard J, Burstein SA, Cramer EM, Vainchenker W, Wendling F (1997) High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 90:4369–4383PubMed
18.
go back to reference Vannuchi A, Bianchi L, Cellai C, Paoletti F, Rana RA, Lorenzini R, Migliaccio G, Migliaccio AR (2002) Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood 100:1123–1132CrossRef Vannuchi A, Bianchi L, Cellai C, Paoletti F, Rana RA, Lorenzini R, Migliaccio G, Migliaccio AR (2002) Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood 100:1123–1132CrossRef
19.
go back to reference Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19:652–660PubMedCrossRef Kacena MA, Shivdasani RA, Wilson K, Xi Y, Troiano N, Nazarian A, Gundberg CM, Bouxsein ML, Lorenzo JA, Horowitz MC (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19:652–660PubMedCrossRef
20.
go back to reference Kacena MA, Gundberg CM, Nelson T, Horowitz MC (2005) Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone 36:215–223PubMedCrossRef Kacena MA, Gundberg CM, Nelson T, Horowitz MC (2005) Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype. Bone 36:215–223PubMedCrossRef
21.
go back to reference de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang WJ, Oles KJ, Hultgren B, Solberg LA Jr, Goeddel DV, Eaton DL (1994) Stimulation of megakaryocytopoiesis and thrombopoieis by the c-Mpl ligand. Nature 369:533–538PubMedCrossRef de Sauvage FJ, Hass PE, Spencer SD, Malloy BE, Gurney AL, Spencer SA, Darbonne WC, Henzel WJ, Wong SC, Kuang WJ, Oles KJ, Hultgren B, Solberg LA Jr, Goeddel DV, Eaton DL (1994) Stimulation of megakaryocytopoiesis and thrombopoieis by the c-Mpl ligand. Nature 369:533–538PubMedCrossRef
22.
go back to reference Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, Bell LA, Sprecher CA, Blumberg H, Johnson R, Prunkard D, Ching AFT, Mathewes SL, Bailey MC, Forstrom JW, Buddle MM, Osborn SG, Evans SJ, Sheppard PO, Presnell SR, O’Hara PJ, Hagen FS, Roth GJ, Foster DC (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369:565–568PubMedCrossRef Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, Bell LA, Sprecher CA, Blumberg H, Johnson R, Prunkard D, Ching AFT, Mathewes SL, Bailey MC, Forstrom JW, Buddle MM, Osborn SG, Evans SJ, Sheppard PO, Presnell SR, O’Hara PJ, Hagen FS, Roth GJ, Foster DC (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369:565–568PubMedCrossRef
23.
go back to reference Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, Foster DC (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369:568–571PubMedCrossRef Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, Roth GJ, Papayannopoulou T, Foster DC (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369:568–571PubMedCrossRef
24.
go back to reference Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265:1445–1447PubMedCrossRef Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265:1445–1447PubMedCrossRef
25.
go back to reference Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood 87:2162–2170PubMed Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood 87:2162–2170PubMed
26.
go back to reference Samuels A, Perry MJ, Tobias JH (1999) High-dose estrogen induces de novo medullary bone formation in female mice. J Bone Miner Res 14:178–186PubMedCrossRef Samuels A, Perry MJ, Tobias JH (1999) High-dose estrogen induces de novo medullary bone formation in female mice. J Bone Miner Res 14:178–186PubMedCrossRef
27.
go back to reference Perry MJ, Samuels A, Bird D, Tobias JH (2000) Effects of high-dose estrogen on murine hematopoietic bone marrow precede those on osteogenesis. Am J Physiol Endocrinol Metab 279:E1159–E1165PubMed Perry MJ, Samuels A, Bird D, Tobias JH (2000) Effects of high-dose estrogen on murine hematopoietic bone marrow precede those on osteogenesis. Am J Physiol Endocrinol Metab 279:E1159–E1165PubMed
28.
go back to reference Ihara K, Ishii E, Eguchi M, Takada H, Suminoe A, Good RA, Hara T (1999) Identifications of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 96:3132–3136PubMedCrossRef Ihara K, Ishii E, Eguchi M, Takada H, Suminoe A, Good RA, Hara T (1999) Identifications of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 96:3132–3136PubMedCrossRef
29.
go back to reference Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, Krukemeier S, Eilers M, Strauss G, Welte K (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97:139–146PubMedCrossRef Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, Krukemeier S, Eilers M, Strauss G, Welte K (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97:139–146PubMedCrossRef
30.
go back to reference King S, Germeshausen M, Strauss G, Welte K, Ballmaier M (2005) Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 131:636–644PubMedCrossRef King S, Germeshausen M, Strauss G, Welte K, Ballmaier M (2005) Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 131:636–644PubMedCrossRef
31.
go back to reference Balduini CL, Iolascon A, Savoia A (2002) Inherited thrombocytopenias: from genes to therapy. Haematologica 87:860–880PubMed Balduini CL, Iolascon A, Savoia A (2002) Inherited thrombocytopenias: from genes to therapy. Haematologica 87:860–880PubMed
32.
go back to reference Geddis AE (2006) Inherited thrombocytopenia: congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Semin Hematol 43:196–203PubMedCrossRef Geddis AE (2006) Inherited thrombocytopenia: congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Semin Hematol 43:196–203PubMedCrossRef
33.
go back to reference Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchecker W, Wendling F (2002) Prominent role of TGF-β1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495–3503PubMedCrossRef Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchecker W, Wendling F (2002) Prominent role of TGF-β1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495–3503PubMedCrossRef
34.
go back to reference Thiele J, Kvasnicka HM, Vardiman J (2006) Bone marrow histopathology in the diagnosis of chronic myeloproliferative disorders: a forgotten pearl. Best Pract Res Clin Haematol 19:413–437PubMedCrossRef Thiele J, Kvasnicka HM, Vardiman J (2006) Bone marrow histopathology in the diagnosis of chronic myeloproliferative disorders: a forgotten pearl. Best Pract Res Clin Haematol 19:413–437PubMedCrossRef
35.
go back to reference Chagraoui H, Tulliez M, Smayra T, Komura E, Giraudier S, Yun T, Lassau N, Vainchenker W, Wendling F (2003) Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983–2989PubMedCrossRef Chagraoui H, Tulliez M, Smayra T, Komura E, Giraudier S, Yun T, Lassau N, Vainchenker W, Wendling F (2003) Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983–2989PubMedCrossRef
36.
go back to reference Kakumitsu H, Kamezaki K, Shimoda K, Karube K, Haro T, Numata A, Shide K, Matsuda T, Oshima K, Harada M (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29:761–769PubMedCrossRef Kakumitsu H, Kamezaki K, Shimoda K, Karube K, Haro T, Numata A, Shide K, Matsuda T, Oshima K, Harada M (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29:761–769PubMedCrossRef
37.
go back to reference Wang JC, Hemavathy K, Charles W, Zhang H, Dua PK, Nvetsky AD, Chnag T, Wong C, Jabara M (2004) Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 32:905–910PubMedCrossRef Wang JC, Hemavathy K, Charles W, Zhang H, Dua PK, Nvetsky AD, Chnag T, Wong C, Jabara M (2004) Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 32:905–910PubMedCrossRef
38.
go back to reference Bock O, Loch G, Schade U, Büsche G, Wasielewski R, Wiese B, Kriepe H (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130:76–82PubMedCrossRef Bock O, Loch G, Schade U, Büsche G, Wasielewski R, Wiese B, Kriepe H (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130:76–82PubMedCrossRef
39.
go back to reference Schmidt A, Blanchet O, Dib M, Basle MF, Ifrah N, Chappard D (2007) Bone changes in myelofibrosis with myeloid metaplasia: a histomorphometric and microcomputed tomographic study. Eur J Haematol 78:500–509PubMedCrossRef Schmidt A, Blanchet O, Dib M, Basle MF, Ifrah N, Chappard D (2007) Bone changes in myelofibrosis with myeloid metaplasia: a histomorphometric and microcomputed tomographic study. Eur J Haematol 78:500–509PubMedCrossRef
Metadata
Title
Mice Rendered Severely Deficient in Megakaryocytes through Targeted Gene Deletion of the Thrombopoietin Receptor c-Mpl Have a Normal Skeletal Phenotype
Authors
Mark J. Perry
Katrina A. Redding
Warren S. Alexander
Jonathan H. Tobias
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 3/2007
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-007-9051-z

Other articles of this Issue 3/2007

Calcified Tissue International 3/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine