Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2018

01-08-2018 | Review Article

Methods of Estimating Kidney Function for Drug Dosing in Special Populations

Authors: Laura A. Hart, Gail D. Anderson

Published in: Clinical Pharmacokinetics | Issue 8/2018

Login to get access

Abstract

International guidelines recommend the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) method to monitor kidney function in chronic kidney disease using either creatinine- or cystatin C-based estimation methods. The choice of an estimation method to determine dosage for renally eliminated drugs is not as clear. For the majority of currently marketed drugs, the Cockcroft-Gault equation with the Jaffe method, a non-isotope dilution mass spectrometry, standardized serum creatinine, was used to estimate kidney function to recommend dosing adjustment in kidney impairment. As the Cockcroft–Gault equation cannot be converted for isotope dilution mass spectrometry-traceable creatinine values and clinical laboratories now report estimated glomerular filtration (eGFR) rate by the Modified Diet in Renal Disease (MDRD) Equation or CKD-EPI, the eGFR is now more widely accepted for dosage adjustment recommendations. Cockcroft-Gault, MDRD Equation, and CKD-EPI creatinine-based methods were developed in specific populations, which included either none or a low proportion of obese individuals, pregnant women, older adults, and those with significant comorbid conditions. Clinical studies in these special populations have identified significant decreased accuracy, precision, and bias in the creatinine-based methods. Newer cystatin C-based estimation methods may significantly improve the ability to estimate kidney function to determine doses in the future. At this time, the increased cost and lack of standardization of serum cystatin C hinder routine use.
Appendix
Available only for authorised users
Footnotes
1
MDRD = MDRD4 unless otherwise stated.
 
Literature
1.
go back to reference Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Ther. 2006;109(1–2):1–11.PubMedCrossRef Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Ther. 2006;109(1–2):1–11.PubMedCrossRef
2.
go back to reference Brater DC. Drug dosing in patients with impaired renal function. Clin Pharmacol Ther. 2009;86(5):483–9.PubMedCrossRef Brater DC. Drug dosing in patients with impaired renal function. Clin Pharmacol Ther. 2009;86(5):483–9.PubMedCrossRef
3.
go back to reference Soveri I, Berg UB, Bjork J, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–24.PubMedCrossRef Soveri I, Berg UB, Bjork J, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–24.PubMedCrossRef
4.
go back to reference Miller BF, Winkler AW. The renal excretion of endogenous creatinine in man: comparison with exogenous creatinine and inulin. J Clin Invest. 1938;17(1):31–40.PubMedPubMedCentralCrossRef Miller BF, Winkler AW. The renal excretion of endogenous creatinine in man: comparison with exogenous creatinine and inulin. J Clin Invest. 1938;17(1):31–40.PubMedPubMedCentralCrossRef
5.
go back to reference Miller WG, Myers GL, Ashwood ER, et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005;129(3):297–304.PubMed Miller WG, Myers GL, Ashwood ER, et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005;129(3):297–304.PubMed
6.
go back to reference Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.PubMedCrossRef Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.PubMedCrossRef
7.
go back to reference Nyman HA, Dowling TC, Hudson JQ, et al. Comparative evaluation of the Cockcroft–Gault equation and the Modification of Diet in Renal Disease (MDRD) study equation for drug dosing: an opinion of the Nephrology Practice and Research Network of the American College of Clinical Pharmacy. Pharmacotherapy. 2011;31(11):1130–44.PubMedCrossRef Nyman HA, Dowling TC, Hudson JQ, et al. Comparative evaluation of the Cockcroft–Gault equation and the Modification of Diet in Renal Disease (MDRD) study equation for drug dosing: an opinion of the Nephrology Practice and Research Network of the American College of Clinical Pharmacy. Pharmacotherapy. 2011;31(11):1130–44.PubMedCrossRef
8.
go back to reference Grubb A, Simonsen O, Sturfelt G, et al. Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand. 1985;218(5):499–503.PubMedCrossRef Grubb A, Simonsen O, Sturfelt G, et al. Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand. 1985;218(5):499–503.PubMedCrossRef
9.
go back to reference Vinge E, Lindergard B, Nilsson-Ehle P, et al. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest. 1999;59(8):587–92.PubMedCrossRef Vinge E, Lindergard B, Nilsson-Ehle P, et al. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest. 1999;59(8):587–92.PubMedCrossRef
10.
go back to reference Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.PubMedCrossRef Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.PubMedCrossRef
11.
go back to reference Fricker M, Wiesli P, Brandle M, et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;63(5):1944–7.PubMedCrossRef Fricker M, Wiesli P, Brandle M, et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;63(5):1944–7.PubMedCrossRef
12.
go back to reference Stevens LA, Schmid CH, Greene T, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75(6):652–60.PubMedCrossRef Stevens LA, Schmid CH, Greene T, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75(6):652–60.PubMedCrossRef
13.
go back to reference Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305(15):1545–52.PubMedPubMedCentralCrossRef Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305(15):1545–52.PubMedPubMedCentralCrossRef
14.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group, KDIGO 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group, KDIGO 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.
15.
go back to reference Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.PubMedPubMedCentralCrossRef Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.PubMedPubMedCentralCrossRef
16.
go back to reference Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation: Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.PubMedCrossRef Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation: Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.PubMedCrossRef
17.
go back to reference Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.PubMedCrossRef Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.PubMedCrossRef
18.
go back to reference Levey AS, Kramer H. Obesity, glomerular hyperfiltration, and the surface area correction. Am J Kidney Dis. 2010;56(2):255–8.PubMedCrossRef Levey AS, Kramer H. Obesity, glomerular hyperfiltration, and the surface area correction. Am J Kidney Dis. 2010;56(2):255–8.PubMedCrossRef
19.
go back to reference Ratain MJ. Body-surface area as a basis for dosing of anticancer agents: science, myth, or habit? J Clin Oncol. 1998;16(7):2297–8.PubMedCrossRef Ratain MJ. Body-surface area as a basis for dosing of anticancer agents: science, myth, or habit? J Clin Oncol. 1998;16(7):2297–8.PubMedCrossRef
20.
go back to reference Delanaye P, Krzesinski JM. Indexing of renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract. 2011;119(4):c289–92.PubMedCrossRef Delanaye P, Krzesinski JM. Indexing of renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract. 2011;119(4):c289–92.PubMedCrossRef
21.
go back to reference Imai E, Horio M, Nitta K, et al. Modification of the Modification of Diet in Renal Disease (MDRD) Study equation for Japan. Am J Kidney Dis. 2007;50(6):927–37.PubMedCrossRef Imai E, Horio M, Nitta K, et al. Modification of the Modification of Diet in Renal Disease (MDRD) Study equation for Japan. Am J Kidney Dis. 2007;50(6):927–37.PubMedCrossRef
22.
go back to reference Ma YC, Zuo L, Zhang CL, et al. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. Nephrol Dial Transplant. 2007;22(2):417–23.PubMedCrossRef Ma YC, Zuo L, Zhang CL, et al. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. Nephrol Dial Transplant. 2007;22(2):417–23.PubMedCrossRef
23.
go back to reference Dai SS, Yasuda Y, Zhang CL, et al. Evaluation of GFR measurement method as an explanation for differences among GFR estimation equations. Am J Kidney Dis. 2011;58(3):496–8.PubMedCrossRef Dai SS, Yasuda Y, Zhang CL, et al. Evaluation of GFR measurement method as an explanation for differences among GFR estimation equations. Am J Kidney Dis. 2011;58(3):496–8.PubMedCrossRef
24.
go back to reference Coresh J, Stevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens 2006;15:276–84. Coresh J, Stevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens 2006;15:276–84.
25.
go back to reference Delanaye P, Mariat C. The applicability of eGFR equations to different populations. Nat Rev Nephrol. 2013;9(9):513–22.PubMedCrossRef Delanaye P, Mariat C. The applicability of eGFR equations to different populations. Nat Rev Nephrol. 2013;9(9):513–22.PubMedCrossRef
26.
go back to reference Coresh J, Auguste P. Reliability of GFR formulas based on serum creatinine, with special reference to the MDRD Study equation. Scand J Clin Lab Invest Suppl. 2008;241:30–8.PubMedCrossRef Coresh J, Auguste P. Reliability of GFR formulas based on serum creatinine, with special reference to the MDRD Study equation. Scand J Clin Lab Invest Suppl. 2008;241:30–8.PubMedCrossRef
28.
go back to reference Stevens LA, Claybon MA, Schmid CH, et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555–62.PubMedCrossRef Stevens LA, Claybon MA, Schmid CH, et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555–62.PubMedCrossRef
30.
go back to reference Madero M, Sarnak MJ. Creatinine-based formulae for estimating glomerular filtration rate: is it time to change to chronic kidney disease epidemiology collaboration equation? Curr Opin Nephrol Hypertens. 2011;20(6):622–30.PubMedCrossRef Madero M, Sarnak MJ. Creatinine-based formulae for estimating glomerular filtration rate: is it time to change to chronic kidney disease epidemiology collaboration equation? Curr Opin Nephrol Hypertens. 2011;20(6):622–30.PubMedCrossRef
31.
go back to reference Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486–95.PubMedPubMedCentralCrossRef Stevens LA, Schmid CH, Greene T, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010;56(3):486–95.PubMedPubMedCentralCrossRef
32.
go back to reference Michels WM, Grootendorst DC, Verduijn M, et al. Performance of the Cockcroft–Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol. 2010;5(6):1003–9.PubMedPubMedCentralCrossRef Michels WM, Grootendorst DC, Verduijn M, et al. Performance of the Cockcroft–Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol. 2010;5(6):1003–9.PubMedPubMedCentralCrossRef
33.
go back to reference Horio M, Imai E, Yasuda Y, et al. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32–8.PubMedCrossRef Horio M, Imai E, Yasuda Y, et al. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32–8.PubMedCrossRef
34.
go back to reference Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014;85(1):49–61.PubMedCrossRef Levin A, Stevens PE. Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 2014;85(1):49–61.PubMedCrossRef
35.
go back to reference Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.PubMedPubMedCentralCrossRef Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.PubMedPubMedCentralCrossRef
36.
go back to reference Huang SM, Temple R, Xiao S, et al. When to conduct a renal impairment study during drug development: US Food and Drug Administration perspective. Clin Pharmacol Ther. 2009;86(5):475–9.PubMedCrossRef Huang SM, Temple R, Xiao S, et al. When to conduct a renal impairment study during drug development: US Food and Drug Administration perspective. Clin Pharmacol Ther. 2009;86(5):475–9.PubMedCrossRef
37.
go back to reference Lalonde RL, Wagner JA. Drug development perspective on pharmacokinetic studies of new drugs in patients with renal impairment. Clin Pharmacol Ther. 2009;86(5):557–61.PubMedCrossRef Lalonde RL, Wagner JA. Drug development perspective on pharmacokinetic studies of new drugs in patients with renal impairment. Clin Pharmacol Ther. 2009;86(5):557–61.PubMedCrossRef
38.
go back to reference Park EJ, Wu K, Mi Z, et al. A systematic comparison of cockcroft-gault and modification of diet in renal disease equations for classification of kidney dysfunction and dosage adjustment. Ann Pharmacother. 2012;46(9):1174–87.PubMedCrossRef Park EJ, Wu K, Mi Z, et al. A systematic comparison of cockcroft-gault and modification of diet in renal disease equations for classification of kidney dysfunction and dosage adjustment. Ann Pharmacother. 2012;46(9):1174–87.PubMedCrossRef
39.
go back to reference Stevens LA, Nolin TD, Richardson MM, et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am J Kidney Dis. 2009;54(1):33–42.PubMedPubMedCentralCrossRef Stevens LA, Nolin TD, Richardson MM, et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am J Kidney Dis. 2009;54(1):33–42.PubMedPubMedCentralCrossRef
40.
go back to reference Matzke GR, Aronoff GR, Atkinson AJ Jr, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.PubMedCrossRef Matzke GR, Aronoff GR, Atkinson AJ Jr, et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011;80(11):1122–37.PubMedCrossRef
41.
go back to reference Obesity: preventing and managing the global epidemic, report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894(i-xii):1–253. Obesity: preventing and managing the global epidemic, report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894(i-xii):1–253.
42.
go back to reference Chagnac A, Weinstein T, Korzets A, et al. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol. 2000;278(5):F817–22.PubMedCrossRef Chagnac A, Weinstein T, Korzets A, et al. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol. 2000;278(5):F817–22.PubMedCrossRef
43.
go back to reference Henegar JR, Bigler SA, Henegar LK, et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol. 2001;12(6):1211–7.PubMed Henegar JR, Bigler SA, Henegar LK, et al. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol. 2001;12(6):1211–7.PubMed
44.
go back to reference Park EJ, Pai MP, Dong T, et al. The influence of body size descriptors on the estimation of kidney function in normal weight, overweight, obese, and morbidly obese adults. Ann Pharmacother. 2012;46(3):317–28.PubMedCrossRef Park EJ, Pai MP, Dong T, et al. The influence of body size descriptors on the estimation of kidney function in normal weight, overweight, obese, and morbidly obese adults. Ann Pharmacother. 2012;46(3):317–28.PubMedCrossRef
45.
go back to reference Demirovic JA, Pai AB, Pai MP. Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm. 2009;66(7):642–8.PubMedCrossRef Demirovic JA, Pai AB, Pai MP. Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm. 2009;66(7):642–8.PubMedCrossRef
46.
go back to reference Nelson WK, Formica RN Jr, Cooper DL, et al. An analysis of measured and estimated creatinine clearance rates in normal weight, overweight, and obese patients with gynecologic cancers. J Oncol Pharm Pract. 2012;18(3):323–32.PubMedCrossRef Nelson WK, Formica RN Jr, Cooper DL, et al. An analysis of measured and estimated creatinine clearance rates in normal weight, overweight, and obese patients with gynecologic cancers. J Oncol Pharm Pract. 2012;18(3):323–32.PubMedCrossRef
47.
go back to reference Bouquegneau A, Vidal-Petiot E, Moranne O, et al. Creatinine-based equations for the adjustment of drug dosage in an obese population. Br J Clin Pharmacol. 2016;81(2):349–61.PubMedPubMedCentralCrossRef Bouquegneau A, Vidal-Petiot E, Moranne O, et al. Creatinine-based equations for the adjustment of drug dosage in an obese population. Br J Clin Pharmacol. 2016;81(2):349–61.PubMedPubMedCentralCrossRef
48.
go back to reference Verhave JC, Fesler P, Ribstein J, et al. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005;46(2):233–41.PubMedCrossRef Verhave JC, Fesler P, Ribstein J, et al. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005;46(2):233–41.PubMedCrossRef
49.
go back to reference Chew-Harris JS, Chin PK, Florkowski CM, et al. Removal of body surface area normalisation improves raw-measured glomerular filtration rate estimation by the Chronic Kidney Disease Epidemiology Collaboration equation and drug dosing in the obese. Intern Med J. 2015;45(7):766–73.PubMedCrossRef Chew-Harris JS, Chin PK, Florkowski CM, et al. Removal of body surface area normalisation improves raw-measured glomerular filtration rate estimation by the Chronic Kidney Disease Epidemiology Collaboration equation and drug dosing in the obese. Intern Med J. 2015;45(7):766–73.PubMedCrossRef
51.
go back to reference Salazar DE, Corcoran GB. Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med. 1988;84(6):1053–60.PubMedCrossRef Salazar DE, Corcoran GB. Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med. 1988;84(6):1053–60.PubMedCrossRef
52.
go back to reference Kastl JT. Renal function in the fetus and neonate: the creatinine enigma. Semin Fetal Neonatal Med. 2017;22(2):83–9.PubMedCrossRef Kastl JT. Renal function in the fetus and neonate: the creatinine enigma. Semin Fetal Neonatal Med. 2017;22(2):83–9.PubMedCrossRef
55.
go back to reference Pottel H, Hoste L, Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol. 2012;27(6):973–9.PubMedCrossRef Pottel H, Hoste L, Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr Nephrol. 2012;27(6):973–9.PubMedCrossRef
56.
go back to reference Hoste L, Dubourg L, Selistre L, et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant. 2014;29(5):1082–91.PubMedCrossRef Hoste L, Dubourg L, Selistre L, et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant. 2014;29(5):1082–91.PubMedCrossRef
57.
go back to reference Blufpand HN, Westland R, van Wijk JA, et al. Height-independent estimation of glomerular filtration rate in children: an alternative to the Schwartz equation. J Pediatr. 2013;163(6):1722–7.PubMedCrossRef Blufpand HN, Westland R, van Wijk JA, et al. Height-independent estimation of glomerular filtration rate in children: an alternative to the Schwartz equation. J Pediatr. 2013;163(6):1722–7.PubMedCrossRef
58.
go back to reference De Souza V, Pottel H, Hoste L, et al. Can the height-independent Pottel eGFR equation be used as a screening tool for chronic kidney disease in children? Eur J Pediatr. 2015;174(9):1225–35.PubMedCrossRef De Souza V, Pottel H, Hoste L, et al. Can the height-independent Pottel eGFR equation be used as a screening tool for chronic kidney disease in children? Eur J Pediatr. 2015;174(9):1225–35.PubMedCrossRef
59.
go back to reference Jeong TD, Cho EJ, Lee W, et al. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med. 2017;55(12):1891–7.PubMedCrossRef Jeong TD, Cho EJ, Lee W, et al. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med. 2017;55(12):1891–7.PubMedCrossRef
60.
go back to reference Pottel H, Hoste L, Dubourg L, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31(5):798–806.PubMedPubMedCentralCrossRef Pottel H, Hoste L, Dubourg L, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31(5):798–806.PubMedPubMedCentralCrossRef
61.
go back to reference Dodgshun AJ, Quinlan C, Sullivan MJ. Cystatin C based equation accurately estimates glomerular filtration rate in children with solid and central nervous system tumours: enough evidence to change practice? Pediatr Blood Cancer. 2016;63(9):1535–8.PubMedCrossRef Dodgshun AJ, Quinlan C, Sullivan MJ. Cystatin C based equation accurately estimates glomerular filtration rate in children with solid and central nervous system tumours: enough evidence to change practice? Pediatr Blood Cancer. 2016;63(9):1535–8.PubMedCrossRef
62.
go back to reference Chehade H, Cachat F, Jannot AS, et al. New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol. 2014;9(1):54–63.PubMedCrossRef Chehade H, Cachat F, Jannot AS, et al. New combined serum creatinine and cystatin C quadratic formula for GFR assessment in children. Clin J Am Soc Nephrol. 2014;9(1):54–63.PubMedCrossRef
63.
go back to reference Deng F, Finer G, Haymond S, et al. Applicability of estimating glomerular filtration rate equations in pediatric patients: comparison with a measured glomerular filtration rate by iohexol clearance. Transl Res. 2015;165(3):437–45.PubMedCrossRef Deng F, Finer G, Haymond S, et al. Applicability of estimating glomerular filtration rate equations in pediatric patients: comparison with a measured glomerular filtration rate by iohexol clearance. Transl Res. 2015;165(3):437–45.PubMedCrossRef
65.
go back to reference Glassock RJ, Winearls C. Ageing and the glomerular filtration rate: truths and consequences. Trans Am Clin Climatol Assoc. 2009;120:419–28.PubMedPubMedCentral Glassock RJ, Winearls C. Ageing and the glomerular filtration rate: truths and consequences. Trans Am Clin Climatol Assoc. 2009;120:419–28.PubMedPubMedCentral
66.
go back to reference Dowling TC, Wang ES, Ferrucci L, et al. Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore Longitudinal Study on Aging: impact on renal drug dosing. Pharmacotherapy. 2013;33(9):912–21.PubMedPubMedCentralCrossRef Dowling TC, Wang ES, Ferrucci L, et al. Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore Longitudinal Study on Aging: impact on renal drug dosing. Pharmacotherapy. 2013;33(9):912–21.PubMedPubMedCentralCrossRef
67.
go back to reference Smythe M, Hoffman J, Kizy K, et al. Estimating creatinine clearance in elderly patients with low serum creatinine concentrations. Am J Hosp Pharm. 1994;51(2):198–204.PubMed Smythe M, Hoffman J, Kizy K, et al. Estimating creatinine clearance in elderly patients with low serum creatinine concentrations. Am J Hosp Pharm. 1994;51(2):198–204.PubMed
68.
go back to reference Burkhardt H, Bojarsky G, Gretz N, et al. Creatinine clearance, Cockcroft–Gault formula and cystatin C: estimators of true glomerular filtration rate in the elderly? Gerontology. 2002;48(3):140–6.PubMedCrossRef Burkhardt H, Bojarsky G, Gretz N, et al. Creatinine clearance, Cockcroft–Gault formula and cystatin C: estimators of true glomerular filtration rate in the elderly? Gerontology. 2002;48(3):140–6.PubMedCrossRef
69.
go back to reference Fehrman-Ekholm I, Skeppholm L. Renal function in the elderly (> 70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol. 2004;38(1):73–7.PubMedCrossRef Fehrman-Ekholm I, Skeppholm L. Renal function in the elderly (> 70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol. 2004;38(1):73–7.PubMedCrossRef
70.
go back to reference Flamant M, Haymann JP, Vidal-Petiot E, et al. GFR estimation using the Cockcroft–Gault, MDRD study, and CKD-EPI equations in the elderly. Am J Kidney Dis. 2012;60(5):847–9.PubMedCrossRef Flamant M, Haymann JP, Vidal-Petiot E, et al. GFR estimation using the Cockcroft–Gault, MDRD study, and CKD-EPI equations in the elderly. Am J Kidney Dis. 2012;60(5):847–9.PubMedCrossRef
71.
go back to reference Lamb EJ, Webb MC, O’Riordan SE. Using the modification of diet in renal disease (MDRD) and Cockcroft and Gault equations to estimate glomerular filtration rate (GFR) in older people. Age Ageing. 2007;36(6):689–92.PubMedCrossRef Lamb EJ, Webb MC, O’Riordan SE. Using the modification of diet in renal disease (MDRD) and Cockcroft and Gault equations to estimate glomerular filtration rate (GFR) in older people. Age Ageing. 2007;36(6):689–92.PubMedCrossRef
72.
go back to reference Sun X, Chen Y, Chen X, et al. Change of glomerular filtration rate in healthy adults with aging. Nephrology (Carlton). 2009;14(5):506–13.PubMedCrossRef Sun X, Chen Y, Chen X, et al. Change of glomerular filtration rate in healthy adults with aging. Nephrology (Carlton). 2009;14(5):506–13.PubMedCrossRef
73.
go back to reference Burkhardt H, Hahn T, Gretz N, et al. Bedside estimation of the glomerular filtration rate in hospitalized elderly patients. Nephron Clin Pract. 2005;101(1):c1–8.PubMedCrossRef Burkhardt H, Hahn T, Gretz N, et al. Bedside estimation of the glomerular filtration rate in hospitalized elderly patients. Nephron Clin Pract. 2005;101(1):c1–8.PubMedCrossRef
74.
go back to reference Carnevale V, Pastore L, Camaioni M, et al. Estimate of renal function in oldest old inpatients by MDRD study equation, Mayo Clinic equation and creatinine clearance. J Nephrol. 2010;23(3):306–13.PubMed Carnevale V, Pastore L, Camaioni M, et al. Estimate of renal function in oldest old inpatients by MDRD study equation, Mayo Clinic equation and creatinine clearance. J Nephrol. 2010;23(3):306–13.PubMed
75.
go back to reference Pequignot R, Belmin J, Chauvelier S, et al. Renal function in older hospital patients is more accurately estimated using the Cockcroft-Gault formula than the modification diet in renal disease formula. J Am Geriatr Soc. 2009;57(9):1638–43.PubMedCrossRef Pequignot R, Belmin J, Chauvelier S, et al. Renal function in older hospital patients is more accurately estimated using the Cockcroft-Gault formula than the modification diet in renal disease formula. J Am Geriatr Soc. 2009;57(9):1638–43.PubMedCrossRef
76.
go back to reference O’Connell MB, Dwinell AM, Bannick-Mohrland SD. Predictive performance of equations to estimate creatinine clearance in hospitalized elderly patients. Ann Pharmacother. 1992;26(5):627–35.PubMedCrossRef O’Connell MB, Dwinell AM, Bannick-Mohrland SD. Predictive performance of equations to estimate creatinine clearance in hospitalized elderly patients. Ann Pharmacother. 1992;26(5):627–35.PubMedCrossRef
77.
go back to reference Rimon E, Kagansky N, Cojocaru L, et al. Can creatinine clearance be accurately predicted by formulae in octogenarian in-patients? QJM. 2004;97(5):281–7.PubMedCrossRef Rimon E, Kagansky N, Cojocaru L, et al. Can creatinine clearance be accurately predicted by formulae in octogenarian in-patients? QJM. 2004;97(5):281–7.PubMedCrossRef
78.
go back to reference Van Den Noortgate NJ, Janssens WH, Delanghe JR, et al. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc. 2002;50(7):1278–82.CrossRef Van Den Noortgate NJ, Janssens WH, Delanghe JR, et al. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc. 2002;50(7):1278–82.CrossRef
79.
go back to reference Kilbride HS, Stevens PE, Eaglestone G, et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis. 2013;61(1):57–66.PubMedCrossRef Kilbride HS, Stevens PE, Eaglestone G, et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis. 2013;61(1):57–66.PubMedCrossRef
80.
go back to reference Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157(7):471–81.PubMedCrossRef Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157(7):471–81.PubMedCrossRef
81.
go back to reference Lopes MB, Araujo LQ, Passos MT, et al. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 2013;14:265.PubMedPubMedCentralCrossRef Lopes MB, Araujo LQ, Passos MT, et al. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 2013;14:265.PubMedPubMedCentralCrossRef
82.
go back to reference Koppe L, Klich A, Dubourg L, et al. Performance of creatinine-based equations compared in older patients. J Nephrol. 2013;26(4):716–23.PubMedCrossRef Koppe L, Klich A, Dubourg L, et al. Performance of creatinine-based equations compared in older patients. J Nephrol. 2013;26(4):716–23.PubMedCrossRef
83.
go back to reference Werner K, Pihlsgard M, Elmstahl S, et al. Combining cystatin C and creatinine yields a reliable glomerular filtration rate estimation in older adults in contrast to beta-trace protein and beta2-microglobulin. Nephron. 2017;137(1):29–37.PubMedCrossRef Werner K, Pihlsgard M, Elmstahl S, et al. Combining cystatin C and creatinine yields a reliable glomerular filtration rate estimation in older adults in contrast to beta-trace protein and beta2-microglobulin. Nephron. 2017;137(1):29–37.PubMedCrossRef
84.
go back to reference Lindheimer M, Katz A. Renal physiology and disease in pregnancy. In: Seldin D, Giebisch G, editors. The kidney: physiology and pathophysiology. 2nd ed. New York: Raven; 1992. p. 2017–41. Lindheimer M, Katz A. Renal physiology and disease in pregnancy. In: Seldin D, Giebisch G, editors. The kidney: physiology and pathophysiology. 2nd ed. New York: Raven; 1992. p. 2017–41.
85.
go back to reference Davison JM, Hytten FE. Glomerular filtration during and after pregnancy. J Obstet Gynaecol Br Commonw. 1974;81(8):588–95.PubMedCrossRef Davison JM, Hytten FE. Glomerular filtration during and after pregnancy. J Obstet Gynaecol Br Commonw. 1974;81(8):588–95.PubMedCrossRef
86.
go back to reference Quadri KH, Bernardini J, Greenberg A, et al. Assessment of renal function during pregnancy using a random urine protein to creatinine ratio and Cockcroft–Gault formula. Am J Kidney Dis. 1994;24(3):416–20.PubMedCrossRef Quadri KH, Bernardini J, Greenberg A, et al. Assessment of renal function during pregnancy using a random urine protein to creatinine ratio and Cockcroft–Gault formula. Am J Kidney Dis. 1994;24(3):416–20.PubMedCrossRef
87.
go back to reference Cote AM, Lam EM, von Dadelszen P, et al. Monitoring renal function in hypertensive pregnancy. Hypertens Pregnancy. 2010;29(3):318–29.PubMedCrossRef Cote AM, Lam EM, von Dadelszen P, et al. Monitoring renal function in hypertensive pregnancy. Hypertens Pregnancy. 2010;29(3):318–29.PubMedCrossRef
88.
go back to reference Delemarre FM, Schoenmakers CH. The MDRD formula in pregnancy. BJOG. 2008;115(9):1192 (author reply 1193). Delemarre FM, Schoenmakers CH. The MDRD formula in pregnancy. BJOG. 2008;115(9):1192 (author reply 1193).
89.
go back to reference Alper AB, Yi Y, Webber LS, et al. Estimation of glomerular filtration rate in preeclamptic patients. Am J Perinatol. 2007;24(10):569–74.PubMedCrossRef Alper AB, Yi Y, Webber LS, et al. Estimation of glomerular filtration rate in preeclamptic patients. Am J Perinatol. 2007;24(10):569–74.PubMedCrossRef
90.
go back to reference Alper AB, Yi Y, Rahman M, et al. Performance of estimated glomerular filtration rate prediction equations in preeclamptic patients. Am J Perinatol. 2011;28(6):425–30.PubMedCrossRef Alper AB, Yi Y, Rahman M, et al. Performance of estimated glomerular filtration rate prediction equations in preeclamptic patients. Am J Perinatol. 2011;28(6):425–30.PubMedCrossRef
91.
go back to reference Ahmed SB, Bentley-Lewis R, Hollenberg NK, et al. A comparison of prediction equations for estimating glomerular filtration rate in pregnancy. Hypertens Pregnancy. 2009;28(3):243–55.PubMedCrossRef Ahmed SB, Bentley-Lewis R, Hollenberg NK, et al. A comparison of prediction equations for estimating glomerular filtration rate in pregnancy. Hypertens Pregnancy. 2009;28(3):243–55.PubMedCrossRef
92.
go back to reference Smith MC, Moran P, Ward MK, et al. Assessment of glomerular filtration rate during pregnancy using the MDRD formula. BJOG. 2008;115(1):109–12.PubMedCrossRef Smith MC, Moran P, Ward MK, et al. Assessment of glomerular filtration rate during pregnancy using the MDRD formula. BJOG. 2008;115(1):109–12.PubMedCrossRef
93.
go back to reference Koetje PM, Spaan JJ, Kooman JP, et al. Pregnancy reduces the accuracy of the estimated glomerular filtration rate based on Cockroft-Gault and MDRD formulas. Reprod Sci. 2011;18(5):456–62.PubMedCrossRef Koetje PM, Spaan JJ, Kooman JP, et al. Pregnancy reduces the accuracy of the estimated glomerular filtration rate based on Cockroft-Gault and MDRD formulas. Reprod Sci. 2011;18(5):456–62.PubMedCrossRef
95.
go back to reference Camargo EG, Soares AA, Detanico AB, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with type 2 diabetes when compared with healthy individuals. Diabet Med. 2011;28(1):90–5.PubMedCrossRef Camargo EG, Soares AA, Detanico AB, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with type 2 diabetes when compared with healthy individuals. Diabet Med. 2011;28(1):90–5.PubMedCrossRef
96.
go back to reference Veronese FV, Gomes EC, Chanan J, et al. Performance of CKD-EPI equation to estimate glomerular filtration rate as compared to MDRD equation in South Brazilian individuals in each stage of renal function. Clin Chem Lab Med. 2014;52(12):1747–54.PubMedCrossRef Veronese FV, Gomes EC, Chanan J, et al. Performance of CKD-EPI equation to estimate glomerular filtration rate as compared to MDRD equation in South Brazilian individuals in each stage of renal function. Clin Chem Lab Med. 2014;52(12):1747–54.PubMedCrossRef
98.
go back to reference Maple-Brown LJ, Ekinci EI, Hughes JT, et al. Performance of formulas for estimating glomerular filtration rate in Indigenous Australians with and without Type 2 diabetes: the eGFR Study. Diabet Med. 2014;31(7):829–38.PubMedCrossRef Maple-Brown LJ, Ekinci EI, Hughes JT, et al. Performance of formulas for estimating glomerular filtration rate in Indigenous Australians with and without Type 2 diabetes: the eGFR Study. Diabet Med. 2014;31(7):829–38.PubMedCrossRef
99.
go back to reference Husdan H, Rapoport A. Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin Chem. 1968;14(3):222–38.PubMed Husdan H, Rapoport A. Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin Chem. 1968;14(3):222–38.PubMed
100.
go back to reference Zhao F, Zhang L, Lu J, et al. The Chronic Kidney Disease Epidemiology Collaboration equation improves the detection of hyperfiltration in Chinese diabetic patients. Int J Clin Exp Med. 2015;8(12):22084–97.PubMedPubMedCentral Zhao F, Zhang L, Lu J, et al. The Chronic Kidney Disease Epidemiology Collaboration equation improves the detection of hyperfiltration in Chinese diabetic patients. Int J Clin Exp Med. 2015;8(12):22084–97.PubMedPubMedCentral
101.
go back to reference Drion I, Joosten H, Santing L, et al. The Cockcroft–Gault: a better predictor of renal function in an overweight and obese diabetic population. Obes Facts. 2011;4(5):393–9.PubMedCrossRef Drion I, Joosten H, Santing L, et al. The Cockcroft–Gault: a better predictor of renal function in an overweight and obese diabetic population. Obes Facts. 2011;4(5):393–9.PubMedCrossRef
102.
go back to reference Fontsere N, Bonal J, Salinas I, et al. Is the new Mayo Clinic Quadratic equation useful for the estimation of glomerular filtration rate in type 2 diabetic patients? Diabetes Care. 2008;31(12):2265–7.PubMedPubMedCentralCrossRef Fontsere N, Bonal J, Salinas I, et al. Is the new Mayo Clinic Quadratic equation useful for the estimation of glomerular filtration rate in type 2 diabetic patients? Diabetes Care. 2008;31(12):2265–7.PubMedPubMedCentralCrossRef
103.
go back to reference Fontsere N, Salinas I, Bonal J, et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol Dial Transplant. 2006;21(8):2152–8.PubMedCrossRef Fontsere N, Salinas I, Bonal J, et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol Dial Transplant. 2006;21(8):2152–8.PubMedCrossRef
104.
go back to reference Rigalleau V, Lasseur C, Perlemoine C, et al. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or Modification of Diet in Renal Disease study equation? Diabetes Care. 2005;28(4):838–43.PubMedCrossRef Rigalleau V, Lasseur C, Perlemoine C, et al. Estimation of glomerular filtration rate in diabetic subjects: Cockcroft formula or Modification of Diet in Renal Disease study equation? Diabetes Care. 2005;28(4):838–43.PubMedCrossRef
105.
go back to reference Schwandt A, Denkinger M, Fasching P, et al. Comparison of MDRD, CKD-EPI, and Cockcroft–Gault equation in relation to measured glomerular filtration rate among a large cohort with diabetes. J Diabetes Complicat. 2017;31(9):1376–83.PubMedCrossRef Schwandt A, Denkinger M, Fasching P, et al. Comparison of MDRD, CKD-EPI, and Cockcroft–Gault equation in relation to measured glomerular filtration rate among a large cohort with diabetes. J Diabetes Complicat. 2017;31(9):1376–83.PubMedCrossRef
106.
go back to reference Iliadis F, Didangelos T, Ntemka A, et al. Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin C-based equations? Diabetologia. 2011;54(12):2987–94.PubMedCrossRef Iliadis F, Didangelos T, Ntemka A, et al. Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin C-based equations? Diabetologia. 2011;54(12):2987–94.PubMedCrossRef
107.
go back to reference Agoons DD, Balti EV, Kaze FF, et al. Performance of three glomerular filtration rate estimation equations in a population of sub-Saharan Africans with type 2 diabetes. Diabet Med. 2016;33(9):1291–8.PubMedCrossRef Agoons DD, Balti EV, Kaze FF, et al. Performance of three glomerular filtration rate estimation equations in a population of sub-Saharan Africans with type 2 diabetes. Diabet Med. 2016;33(9):1291–8.PubMedCrossRef
108.
go back to reference Rognant N, Lemoine S, Laville M, et al. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients. Diabetes Care. 2011;34(6):1320–2.PubMedPubMedCentralCrossRef Rognant N, Lemoine S, Laville M, et al. Performance of the chronic kidney disease epidemiology collaboration equation to estimate glomerular filtration rate in diabetic patients. Diabetes Care. 2011;34(6):1320–2.PubMedPubMedCentralCrossRef
109.
go back to reference Fontsere N, Bonal J, Navarro M, et al. A comparison of prediction equations for estimating glomerular filtration rate in adult patients with chronic kidney disease stages 4–5: effect of nutritional status and age. Nephron Clin Pract. 2006;104(4):c160–8.PubMedCrossRef Fontsere N, Bonal J, Navarro M, et al. A comparison of prediction equations for estimating glomerular filtration rate in adult patients with chronic kidney disease stages 4–5: effect of nutritional status and age. Nephron Clin Pract. 2006;104(4):c160–8.PubMedCrossRef
110.
go back to reference Silveiro SP, Araujo GN, Ferreira MN, et al. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care. 2011;34(11):2353–5.PubMedPubMedCentralCrossRef Silveiro SP, Araujo GN, Ferreira MN, et al. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care. 2011;34(11):2353–5.PubMedPubMedCentralCrossRef
111.
go back to reference Gaspari F, Ruggenenti P, Porrini E, et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 2013;84(1):164–73.PubMedCrossRef Gaspari F, Ruggenenti P, Porrini E, et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 2013;84(1):164–73.PubMedCrossRef
112.
go back to reference MacIsaac RJ, Ekinci EI, Premaratne E, et al. The Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equation does not improve the underestimation of glomerular filtration rate (GFR) in people with diabetes and preserved renal function. BMC Nephrol. 2015;16:198.PubMedPubMedCentralCrossRef MacIsaac RJ, Ekinci EI, Premaratne E, et al. The Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equation does not improve the underestimation of glomerular filtration rate (GFR) in people with diabetes and preserved renal function. BMC Nephrol. 2015;16:198.PubMedPubMedCentralCrossRef
113.
go back to reference Premaratne E, MacIsaac RJ, Finch S, et al. Serial measurements of cystatin C are more accurate than creatinine-based methods in detecting declining renal function in type 1 diabetes. Diabetes Care. 2008;31(5):971–3.PubMedCrossRef Premaratne E, MacIsaac RJ, Finch S, et al. Serial measurements of cystatin C are more accurate than creatinine-based methods in detecting declining renal function in type 1 diabetes. Diabetes Care. 2008;31(5):971–3.PubMedCrossRef
114.
go back to reference Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353–61.PubMedCrossRef Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353–61.PubMedCrossRef
115.
go back to reference Oh SJ, Lee JI, Ha WC, et al. Comparison of cystatin C- and creatinine-based estimation of glomerular filtration rate according to glycaemic status in Type 2 diabetes. Diabet Med. 2012;29(7):e121–5.PubMedCrossRef Oh SJ, Lee JI, Ha WC, et al. Comparison of cystatin C- and creatinine-based estimation of glomerular filtration rate according to glycaemic status in Type 2 diabetes. Diabet Med. 2012;29(7):e121–5.PubMedCrossRef
116.
go back to reference Macisaac RJ, Tsalamandris C, Thomas MC, et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. Diabetologia. 2006;49(7):1686–9.PubMedCrossRef Macisaac RJ, Tsalamandris C, Thomas MC, et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C- and creatinine-based methods. Diabetologia. 2006;49(7):1686–9.PubMedCrossRef
117.
go back to reference Smilde TD, van Veldhuisen DJ, Navis G, et al. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006;114(15):1572–80.PubMedCrossRef Smilde TD, van Veldhuisen DJ, Navis G, et al. Drawbacks and prognostic value of formulas estimating renal function in patients with chronic heart failure and systolic dysfunction. Circulation. 2006;114(15):1572–80.PubMedCrossRef
118.
go back to reference O’Meara E, Chong KS, Gardner RS, et al. The Modification of Diet in Renal Disease (MDRD) equations provide valid estimations of glomerular filtration rates in patients with advanced heart failure. Eur J Heart Fail. 2006;8(1):63–7.PubMedCrossRef O’Meara E, Chong KS, Gardner RS, et al. The Modification of Diet in Renal Disease (MDRD) equations provide valid estimations of glomerular filtration rates in patients with advanced heart failure. Eur J Heart Fail. 2006;8(1):63–7.PubMedCrossRef
119.
go back to reference Valente MA, Hillege HL, Navis G, et al. The Chronic Kidney Disease Epidemiology Collaboration equation outperforms the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail. 2014;16(1):86–94.PubMedCrossRef Valente MA, Hillege HL, Navis G, et al. The Chronic Kidney Disease Epidemiology Collaboration equation outperforms the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail. 2014;16(1):86–94.PubMedCrossRef
120.
go back to reference Damman K, van der Harst P, Smilde TD, et al. Use of cystatin C levels in estimating renal function and prognosis in patients with chronic systolic heart failure. Heart. 2012;98(4):319–24.PubMedCrossRef Damman K, van der Harst P, Smilde TD, et al. Use of cystatin C levels in estimating renal function and prognosis in patients with chronic systolic heart failure. Heart. 2012;98(4):319–24.PubMedCrossRef
121.
go back to reference Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant. 2003;18(10):2024–31.PubMedCrossRef Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant. 2003;18(10):2024–31.PubMedCrossRef
122.
go back to reference Delanaye P, Nellessen E, Grosch S, et al. Creatinine-based formulae for the estimation of glomerular filtration rate in heart transplant recipients. Clin Transplant. 2006;20(5):596–603.PubMedCrossRef Delanaye P, Nellessen E, Grosch S, et al. Creatinine-based formulae for the estimation of glomerular filtration rate in heart transplant recipients. Clin Transplant. 2006;20(5):596–603.PubMedCrossRef
123.
go back to reference Cvan Trobec K, Kerec Kos M, von Haehling S, et al. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure. Croat Med J. 2015;56(6):531–41.PubMedPubMedCentralCrossRef Cvan Trobec K, Kerec Kos M, von Haehling S, et al. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure. Croat Med J. 2015;56(6):531–41.PubMedPubMedCentralCrossRef
125.
go back to reference Aiello FI, Bajo M, Marti F, et al. How to evaluate renal function in stable cirrhotic patients. Postgrad Med. 2017;129(8):866–71.PubMedCrossRef Aiello FI, Bajo M, Marti F, et al. How to evaluate renal function in stable cirrhotic patients. Postgrad Med. 2017;129(8):866–71.PubMedCrossRef
126.
go back to reference Proulx NL, Akbari A, Garg AX, et al. Measured creatinine clearance from timed urine collections substantially overestimates glomerular filtration rate in patients with liver cirrhosis: a systematic review and individual patient meta-analysis. Nephrol Dial Transplant. 2005;20(8):1617–22.PubMedCrossRef Proulx NL, Akbari A, Garg AX, et al. Measured creatinine clearance from timed urine collections substantially overestimates glomerular filtration rate in patients with liver cirrhosis: a systematic review and individual patient meta-analysis. Nephrol Dial Transplant. 2005;20(8):1617–22.PubMedCrossRef
127.
go back to reference Francoz C, Prie D, Abdelrazek W, et al. Inaccuracies of creatinine and creatinine-based equations in candidates for liver transplantation with low creatinine: impact on the model for end-stage liver disease score. Liver Transpl. 2010;16(10):1169–77.PubMedCrossRef Francoz C, Prie D, Abdelrazek W, et al. Inaccuracies of creatinine and creatinine-based equations in candidates for liver transplantation with low creatinine: impact on the model for end-stage liver disease score. Liver Transpl. 2010;16(10):1169–77.PubMedCrossRef
128.
go back to reference Caregaro L, Menon F, Angeli P, et al. Limitations of serum creatinine level and creatinine clearance as filtration markers in cirrhosis. Arch Intern Med. 1994;154(2):201–5.PubMedCrossRef Caregaro L, Menon F, Angeli P, et al. Limitations of serum creatinine level and creatinine clearance as filtration markers in cirrhosis. Arch Intern Med. 1994;154(2):201–5.PubMedCrossRef
129.
go back to reference Rognant N, Bacchetta J, Dubourg L, et al. What is the best alternative to inulin clearance to estimate GFR in patients with decompensated alcoholic cirrhosis? Nephrol Dial Transplant. 2010;25(11):3569–75.PubMedCrossRef Rognant N, Bacchetta J, Dubourg L, et al. What is the best alternative to inulin clearance to estimate GFR in patients with decompensated alcoholic cirrhosis? Nephrol Dial Transplant. 2010;25(11):3569–75.PubMedCrossRef
130.
go back to reference Skluzacek PA, Szewc RG, Nolan CR 3rd, et al. Prediction of GFR in liver transplant candidates. Am J Kidney Dis. 2003;42(6):1169–76.PubMedCrossRef Skluzacek PA, Szewc RG, Nolan CR 3rd, et al. Prediction of GFR in liver transplant candidates. Am J Kidney Dis. 2003;42(6):1169–76.PubMedCrossRef
131.
go back to reference Vivier PH, Storey P, Rusinek H, et al. Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis. Radiology. 2011;259(2):462–70.PubMedCrossRef Vivier PH, Storey P, Rusinek H, et al. Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis. Radiology. 2011;259(2):462–70.PubMedCrossRef
132.
go back to reference Omar M, Abdel-Razek W, Abo-Raia G, et al. Evaluation of serum cystatin C as a marker of early renal impairment in patients with liver cirrhosis. Int J Hepatol. 2015;2015:309042.PubMedPubMedCentralCrossRef Omar M, Abdel-Razek W, Abo-Raia G, et al. Evaluation of serum cystatin C as a marker of early renal impairment in patients with liver cirrhosis. Int J Hepatol. 2015;2015:309042.PubMedPubMedCentralCrossRef
133.
go back to reference Poge U, Gerhardt T, Stoffel-Wagner B, et al. Calculation of glomerular filtration rate based on cystatin C in cirrhotic patients. Nephrol Dial Transplant. 2006;21(3):660–4.PubMedCrossRef Poge U, Gerhardt T, Stoffel-Wagner B, et al. Calculation of glomerular filtration rate based on cystatin C in cirrhotic patients. Nephrol Dial Transplant. 2006;21(3):660–4.PubMedCrossRef
134.
go back to reference Krones E, Fickert P, Zitta S, et al. The chronic kidney disease epidemiology collaboration equation combining creatinine and cystatin C accurately assesses renal function in patients with cirrhosis. BMC Nephrol. 2015;16:196.PubMedPubMedCentralCrossRef Krones E, Fickert P, Zitta S, et al. The chronic kidney disease epidemiology collaboration equation combining creatinine and cystatin C accurately assesses renal function in patients with cirrhosis. BMC Nephrol. 2015;16:196.PubMedPubMedCentralCrossRef
135.
go back to reference De Souza V, Hadj-Aissa A, Dolomanova O, et al. Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology. 2014;59(4):1522–31.PubMedCrossRef De Souza V, Hadj-Aissa A, Dolomanova O, et al. Creatinine- versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology. 2014;59(4):1522–31.PubMedCrossRef
136.
go back to reference Francoz C, Nadim MK, Baron A, et al. Glomerular filtration rate equations for liver-kidney transplantation in patients with cirrhosis: validation of current recommendations. Hepatology. 2014;59(4):1514–21.PubMedCrossRef Francoz C, Nadim MK, Baron A, et al. Glomerular filtration rate equations for liver-kidney transplantation in patients with cirrhosis: validation of current recommendations. Hepatology. 2014;59(4):1514–21.PubMedCrossRef
137.
go back to reference Gerhardt T, Poge U, Stoffel-Wagner B, et al. Creatinine-based glomerular filtration rate estimation in patients with liver disease: the new Chronic Kidney Disease Epidemiology Collaboration equation is not better. Eur J Gastroenterol Hepatol. 2011;23(11):969–73.PubMedCrossRef Gerhardt T, Poge U, Stoffel-Wagner B, et al. Creatinine-based glomerular filtration rate estimation in patients with liver disease: the new Chronic Kidney Disease Epidemiology Collaboration equation is not better. Eur J Gastroenterol Hepatol. 2011;23(11):969–73.PubMedCrossRef
138.
go back to reference Gonwa TA, Jennings L, Mai ML, et al. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004;10(2):301–9.PubMedCrossRef Gonwa TA, Jennings L, Mai ML, et al. Estimation of glomerular filtration rates before and after orthotopic liver transplantation: evaluation of current equations. Liver Transpl. 2004;10(2):301–9.PubMedCrossRef
139.
go back to reference Haddadin Z, Lee V, Conlin C, et al. Comparison of performance of improved serum estimators of glomerular filtration rate (GFR) to 99mTc-DTPA GFR methods in patients with hepatic cirrhosis. J Nucl Med Technol. 2017;45(1):42–9.PubMedPubMedCentralCrossRef Haddadin Z, Lee V, Conlin C, et al. Comparison of performance of improved serum estimators of glomerular filtration rate (GFR) to 99mTc-DTPA GFR methods in patients with hepatic cirrhosis. J Nucl Med Technol. 2017;45(1):42–9.PubMedPubMedCentralCrossRef
140.
go back to reference Mindikoglu AL, Dowling TC, Magder LS, et al. Estimation of glomerular filtration rate in patients with cirrhosis by using new and conventional filtration markers and dimethylarginines. Clin Gastroenterol Hepatol. 2016;14(4):624–32 e2. Mindikoglu AL, Dowling TC, Magder LS, et al. Estimation of glomerular filtration rate in patients with cirrhosis by using new and conventional filtration markers and dimethylarginines. Clin Gastroenterol Hepatol. 2016;14(4):624–32 e2.
141.
go back to reference Cholongitas E, Ioannidou M, Goulis I, et al. Comparison of creatinine and cystatin formulae with 51 Chromium-ethylenediaminetetraacetic acid glomerular filtration rate in patients with decompensated cirrhosis. J Gastroenterol Hepatol. 2017;32(1):191–8.PubMedCrossRef Cholongitas E, Ioannidou M, Goulis I, et al. Comparison of creatinine and cystatin formulae with 51 Chromium-ethylenediaminetetraacetic acid glomerular filtration rate in patients with decompensated cirrhosis. J Gastroenterol Hepatol. 2017;32(1):191–8.PubMedCrossRef
142.
go back to reference Mindikoglu AL, Dowling TC, Weir MR, et al. Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology. 2014;59(4):1532–42.PubMedCrossRef Mindikoglu AL, Dowling TC, Weir MR, et al. Performance of chronic kidney disease epidemiology collaboration creatinine-cystatin C equation for estimating kidney function in cirrhosis. Hepatology. 2014;59(4):1532–42.PubMedCrossRef
143.
go back to reference Poggio ED, Nef PC, Wang X, et al. Performance of the Cockcroft–Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am J Kidney Dis. 2005;46(2):242–52.PubMedCrossRef Poggio ED, Nef PC, Wang X, et al. Performance of the Cockcroft–Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am J Kidney Dis. 2005;46(2):242–52.PubMedCrossRef
144.
go back to reference Segarra A, de la Torre J, Ramos N, et al. Assessing glomerular filtration rate in hospitalized patients: a comparison between CKD-EPI and four cystatin C-based equations. Clin J Am Soc Nephrol. 2011;6(10):2411–20.PubMedPubMedCentralCrossRef Segarra A, de la Torre J, Ramos N, et al. Assessing glomerular filtration rate in hospitalized patients: a comparison between CKD-EPI and four cystatin C-based equations. Clin J Am Soc Nephrol. 2011;6(10):2411–20.PubMedPubMedCentralCrossRef
145.
go back to reference Frazee EN, Rule AD, Herrmann SM, et al. Serum cystatin C predicts vancomycin trough levels better than serum creatinine in hospitalized patients: a cohort study. Crit Care. 2014;18(3):R110.PubMedPubMedCentralCrossRef Frazee EN, Rule AD, Herrmann SM, et al. Serum cystatin C predicts vancomycin trough levels better than serum creatinine in hospitalized patients: a cohort study. Crit Care. 2014;18(3):R110.PubMedPubMedCentralCrossRef
146.
go back to reference Tanaka A, Suemaru K, Otsuka T, et al. Hoek’s formula, a cystatin C-based prediction formula for determining the glomerular filtration rate, is the most effective method for original adjusting the dosage of vancomycin. Int J Clin Pharmacol Ther. 2007;45(11):592–7.PubMedCrossRef Tanaka A, Suemaru K, Otsuka T, et al. Hoek’s formula, a cystatin C-based prediction formula for determining the glomerular filtration rate, is the most effective method for original adjusting the dosage of vancomycin. Int J Clin Pharmacol Ther. 2007;45(11):592–7.PubMedCrossRef
147.
go back to reference Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol. 2013;24(6):877–88.PubMedCrossRef Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol. 2013;24(6):877–88.PubMedCrossRef
Metadata
Title
Methods of Estimating Kidney Function for Drug Dosing in Special Populations
Authors
Laura A. Hart
Gail D. Anderson
Publication date
01-08-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-0628-7

Other articles of this Issue 8/2018

Clinical Pharmacokinetics 8/2018 Go to the issue