Skip to main content
Top
Published in: Endocrine 3/2020

01-09-2020 | Metformin | Original Article

Differential effects of metformin on reductive activity and energy production in pituitary tumor cells compared to myogenic precursors

Authors: Giovanni Tulipano, Simone Paghera, Cristina Missale, Andrea Giustina

Published in: Endocrine | Issue 3/2020

Login to get access

Abstract

Purpose

Given the multiple targets of metformin within cells, the mechanism by which it may exert a growth-inhibitory action on pituitary tumor cells in vitro remains to be explored. Previous research stressed metformin-induced changes in the activity of signaling pathways regulating cell growth and cell death. In this work, we investigated the effects of metformin on cell viability markers related to cell metabolic activity in rat pituitary tumor cells versus rat myogenic precursors as a model of normal proliferating somatic cells.

Methods

We designed our experiments in order to use the MTT reduction as a marker of cellular reductive activity and the total cellular ATP levels as a marker of energy supply during short incubations with different metabolic substrates (sodium pyruvate, D-glucose, L-glutamine, sodium citrate). Then, we extended the analysis to extracellular glucose consumption, extracellular medium acidification and pyruvate dehydrogenase (PDH) complex activity.

Results

Metformin was found to be effective in both cell types at the same concentrations, although the outcome of the treatment was quite the opposite. Unexpectedly, metformin increased the viability of subconfluent rat myoblasts. Rat pituitary tumor cells and myoblasts differed in the utilization of distinct metabolic substrates and the PDH complex activity. Metformin actions on reductive activity and ATP production were substrate-dependent.

Conclusions

Overall, this work points out that metformin actions at the cellular level depend on metabolic features and metabolic requirements of cells. The pyruvate metabolic branch point is most likely to play a main role in the variability of cell response to metformin.
Appendix
Available only for authorised users
Literature
1.
go back to reference S. Thakur, B. Daley, J. Klubo-Gwiezdzinska, The role of the antidiabetic drug metformin in the treatment of endocrine tumors. J. Mol. Endocrinol. 63, R17–R35 (2019)CrossRef S. Thakur, B. Daley, J. Klubo-Gwiezdzinska, The role of the antidiabetic drug metformin in the treatment of endocrine tumors. J. Mol. Endocrinol. 63, R17–R35 (2019)CrossRef
2.
go back to reference G. Tulipano, M. Giovannini, M. Spinello, V. Sibilia, A. Giustina, D. Cocchi, AMP-activated protein kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous cells. Pituitary 14, 242–252 (2011)CrossRef G. Tulipano, M. Giovannini, M. Spinello, V. Sibilia, A. Giustina, D. Cocchi, AMP-activated protein kinase regulates normal rat somatotroph cell function and growth of rat pituitary adenomatous cells. Pituitary 14, 242–252 (2011)CrossRef
3.
go back to reference J. An, X. Pei, Z. Zang, Z. Zhou, J. Hu, X. Zheng, Y. Zhang, J. He, L. Duan, R. Shen et al. Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget 8, 37538–37549 (2017)CrossRef J. An, X. Pei, Z. Zang, Z. Zhou, J. Hu, X. Zheng, Y. Zhang, J. He, L. Duan, R. Shen et al. Metformin inhibits proliferation and growth hormone secretion of GH3 pituitary adenoma cells. Oncotarget 8, 37538–37549 (2017)CrossRef
4.
go back to reference L. Faggi, A. Giustina, G. Tulipano, Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol. Cell. Endocrinol. 470, 60–74 (2018)CrossRef L. Faggi, A. Giustina, G. Tulipano, Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals. Mol. Cell. Endocrinol. 470, 60–74 (2018)CrossRef
5.
go back to reference M.C. Vázquez-Borrego, A.C. Fuentes-Fayos, A.D. Herrera Martinez, F.L. L-Lopez, A. Ibanez-Costa, P. Moreno-Moreno, M.R. Alhambra-Expósito, A. Barrera-Martín, C. Blanco-Acevedo, E. Dios et al. Biguanides exert antitumoral actions in pituitary tumor cells through AMPK-dependent and –independent mechanisms. J. Clin. Endocrinol. Metabol. 104, 3501–3513 (2019)CrossRef M.C. Vázquez-Borrego, A.C. Fuentes-Fayos, A.D. Herrera Martinez, F.L. L-Lopez, A. Ibanez-Costa, P. Moreno-Moreno, M.R. Alhambra-Expósito, A. Barrera-Martín, C. Blanco-Acevedo, E. Dios et al. Biguanides exert antitumoral actions in pituitary tumor cells through AMPK-dependent and –independent mechanisms. J. Clin. Endocrinol. Metabol. 104, 3501–3513 (2019)CrossRef
6.
go back to reference S. Andrzejewski, S.P. Gravel, M. Pollak, J. St-Pierre, Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metabol. 2, 12 (2014)CrossRef S. Andrzejewski, S.P. Gravel, M. Pollak, J. St-Pierre, Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metabol. 2, 12 (2014)CrossRef
7.
go back to reference A.K. Madiraju, D.M. Erion, Y. Rahimi, X.M. Zhang, D.T. Braddock, R.A. Albright, B.J. Prigaro, J.L. Wood, S. Bhanot, M.J. MacDonald et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014)CrossRef A.K. Madiraju, D.M. Erion, Y. Rahimi, X.M. Zhang, D.T. Braddock, R.A. Albright, B.J. Prigaro, J.L. Wood, S. Bhanot, M.J. MacDonald et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014)CrossRef
8.
go back to reference A.R. Cameron, L. Logie, K. Patel, S. Erhardt, S. Bacon, P. Middleton, J. Harthill, C. Forteath, J.T. Coats, C. Kerra et al. Metformin selectively targets redox control of complex I energy transduction. Redox Biol. 14, 187–197 (2018)CrossRef A.R. Cameron, L. Logie, K. Patel, S. Erhardt, S. Bacon, P. Middleton, J. Harthill, C. Forteath, J.T. Coats, C. Kerra et al. Metformin selectively targets redox control of complex I energy transduction. Redox Biol. 14, 187–197 (2018)CrossRef
9.
go back to reference B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef
10.
go back to reference V.S. Vytla, R.S. Ochs, Metformin increases mitochondrial energy formation in L6 muscle cell cultures. J. Biol. Chem. 288, 20369–20377 (2013)CrossRef V.S. Vytla, R.S. Ochs, Metformin increases mitochondrial energy formation in L6 muscle cell cultures. J. Biol. Chem. 288, 20369–20377 (2013)CrossRef
11.
go back to reference A. Alshawi, L. Agius, Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. J. Biol. Chem. 294, 2839–2853 (2018)CrossRef A. Alshawi, L. Agius, Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. J. Biol. Chem. 294, 2839–2853 (2018)CrossRef
12.
go back to reference S. Thakur, B. Daley, K. Gaskins, V.V. Vasko, M. Boufraqech, D. Patel, C. Sourbier, J. Reece, S.Y. Cheng, E. Kebebew et al. Metformin targets Mitochondrial Glycerophosphate Dehydrogenase (mGPDH) to control Rate of Oxidative Phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin. Cancer Res. 24, 4030–4043 (2018)CrossRef S. Thakur, B. Daley, K. Gaskins, V.V. Vasko, M. Boufraqech, D. Patel, C. Sourbier, J. Reece, S.Y. Cheng, E. Kebebew et al. Metformin targets Mitochondrial Glycerophosphate Dehydrogenase (mGPDH) to control Rate of Oxidative Phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin. Cancer Res. 24, 4030–4043 (2018)CrossRef
13.
go back to reference M.J. Rardin, S.E. Wiley, R.K. Naviaux, A.N. Murphy, J.E. Dixon, Monitoring phosphorylation of the pyruvate dehydrogenase complex. Anal. Biochem. 389, 157–164 (2009)CrossRef M.J. Rardin, S.E. Wiley, R.K. Naviaux, A.N. Murphy, J.E. Dixon, Monitoring phosphorylation of the pyruvate dehydrogenase complex. Anal. Biochem. 389, 157–164 (2009)CrossRef
14.
go back to reference N.H. Jeoung, Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab. J. 39, 188–197 (2015)CrossRef N.H. Jeoung, Pyruvate dehydrogenase kinases: therapeutic targets for diabetes and cancers. Diabetes Metab. J. 39, 188–197 (2015)CrossRef
15.
go back to reference S. Takahashi, T. Abe, J. Gotoh, Y. Fukuuchi, Substrate-dependence of reduction of MTT: a tetrazolium dye differs in cultured astroglia and neurons. Neurochem. Int. 40, 441–448 (2002)CrossRef S. Takahashi, T. Abe, J. Gotoh, Y. Fukuuchi, Substrate-dependence of reduction of MTT: a tetrazolium dye differs in cultured astroglia and neurons. Neurochem. Int. 40, 441–448 (2002)CrossRef
16.
go back to reference G. Tulipano, L. Faggi, M. Losa, P. Mortini, M. Spinello, V. Sibilia, F. Pagani, D. Cocchi, A. Giustina, Effects of AMPK activation and combined treatment with AMPK activators and somatostatin on hormone secretion and cell growth in cultured GH-secreting pituitary tumor cells. Mol. Cell. Endocrinol. 365, 197–206 (2013)CrossRef G. Tulipano, L. Faggi, M. Losa, P. Mortini, M. Spinello, V. Sibilia, F. Pagani, D. Cocchi, A. Giustina, Effects of AMPK activation and combined treatment with AMPK activators and somatostatin on hormone secretion and cell growth in cultured GH-secreting pituitary tumor cells. Mol. Cell. Endocrinol. 365, 197–206 (2013)CrossRef
17.
go back to reference E. Vega-Avila, M.K. Pugsley, An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. Western Pharmacol. Soc. 54, 10–14 (2011) E. Vega-Avila, M.K. Pugsley, An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc. Western Pharmacol. Soc. 54, 10–14 (2011)
18.
go back to reference G. Tulipano, L. Faggi, A. Cacciamali, M. Spinello, D. Cocchi, A. Giustina, Role of AMP-activated protein kinase (AMPK) activators in antiproliferative multi-drug pituitary tumor therapies: effects of combined treatments with compounds affecting the mTOR-p70S6 kinase axis in cultured pituitary tumour cells. J. Neuroendocrinol. 27, 20–32 (2015)CrossRef G. Tulipano, L. Faggi, A. Cacciamali, M. Spinello, D. Cocchi, A. Giustina, Role of AMP-activated protein kinase (AMPK) activators in antiproliferative multi-drug pituitary tumor therapies: effects of combined treatments with compounds affecting the mTOR-p70S6 kinase axis in cultured pituitary tumour cells. J. Neuroendocrinol. 27, 20–32 (2015)CrossRef
19.
go back to reference H. Lin, S. Patel, V.S. Affleck, I. Wilson, D.M. Turnbull, A.R. Joshi, R. Maxwell, E.A. Stoll, Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncology 19, 43–54 (2017)CrossRef H. Lin, S. Patel, V.S. Affleck, I. Wilson, D.M. Turnbull, A.R. Joshi, R. Maxwell, E.A. Stoll, Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncology 19, 43–54 (2017)CrossRef
20.
go back to reference T. Bender, J.C. Martinou, The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? Biochimica et Biophysica Acta 1863, 2436–2442 (2016)CrossRef T. Bender, J.C. Martinou, The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? Biochimica et Biophysica Acta 1863, 2436–2442 (2016)CrossRef
21.
go back to reference K. Linher-Melville, G. Singh, The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol. Cell. Endocrinol. 451, 40–52 (2017)CrossRef K. Linher-Melville, G. Singh, The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol. Cell. Endocrinol. 451, 40–52 (2017)CrossRef
22.
go back to reference M.J. MacDonald, M.J. Longacre, T.F. Warner, A. Thonpho, High level of ATP citrate lyase expression in human and rat pancreatic islets. Hormone Metabol. Res. 45, 391–393 (2013) M.J. MacDonald, M.J. Longacre, T.F. Warner, A. Thonpho, High level of ATP citrate lyase expression in human and rat pancreatic islets. Hormone Metabol. Res. 45, 391–393 (2013)
23.
go back to reference S.M. Fendt, E.L. Bell, M.A. Keibler, S.M. Davidson, G.J. Wirth, B. Fiske, J.R. Mayers, M. Schwab, G. Bellinger, A. Csibi et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73, 4429–4438 (2013)CrossRef S.M. Fendt, E.L. Bell, M.A. Keibler, S.M. Davidson, G.J. Wirth, B. Fiske, J.R. Mayers, M. Schwab, G. Bellinger, A. Csibi et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73, 4429–4438 (2013)CrossRef
24.
go back to reference K. Urakami, V. Zangiacomi, C. Yamaguchi, M. Kusuhara, Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line. Biomed. Res. 34, 221–229 (2013)CrossRef K. Urakami, V. Zangiacomi, C. Yamaguchi, M. Kusuhara, Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line. Biomed. Res. 34, 221–229 (2013)CrossRef
25.
go back to reference Y.W. Choi, I.K. Lim, Sensitization of metformin-cytotoxicity by dichloroacetate via reprogramming glucose metabolism in cancer cells. Cancer Lett. 346, 300–308 (2014)CrossRef Y.W. Choi, I.K. Lim, Sensitization of metformin-cytotoxicity by dichloroacetate via reprogramming glucose metabolism in cancer cells. Cancer Lett. 346, 300–308 (2014)CrossRef
26.
go back to reference I. Ben Sahra, K. Laurent, S. Giuliano, F. Larbret, G. Ponzio, P. Gounon, Y. Le Marchand-Brustel, S. Giorgetti-Peraldi, M. Cormont, C. Bertolotto et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 70, 2465–2475 (2010)CrossRef I. Ben Sahra, K. Laurent, S. Giuliano, F. Larbret, G. Ponzio, P. Gounon, Y. Le Marchand-Brustel, S. Giorgetti-Peraldi, M. Cormont, C. Bertolotto et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 70, 2465–2475 (2010)CrossRef
27.
go back to reference M. Elgendy, M. Cirò, A. Hosseini, J. Weiszmqann, L. Mazzarella, E. Ferrari, R. Cazzoli, G. Curigliano, A. DeCensi, B. Bonanni et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3b-MCL-1 axis. Cancer Cell 35, 1–18 (2019)CrossRef M. Elgendy, M. Cirò, A. Hosseini, J. Weiszmqann, L. Mazzarella, E. Ferrari, R. Cazzoli, G. Curigliano, A. DeCensi, B. Bonanni et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3b-MCL-1 axis. Cancer Cell 35, 1–18 (2019)CrossRef
28.
go back to reference Y. Zhuang, R.C. Ly, C.V. Frazier, J. Yu, S. Qin, X.-Y. Fan, M.P. Goetz, J.C. Boughey, R. Weinshilboum, L. Wang, The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer. Cancer Metabol. 7, 1 (2019)CrossRef Y. Zhuang, R.C. Ly, C.V. Frazier, J. Yu, S. Qin, X.-Y. Fan, M.P. Goetz, J.C. Boughey, R. Weinshilboum, L. Wang, The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer. Cancer Metabol. 7, 1 (2019)CrossRef
29.
go back to reference S. Melmed, M.D. Bronstein, P. Chanson, A. Klibanski, F.F. Casanueva, J.A.H. Wass, C.J. Strasburger, A. Luger, D.R. Clemmons, A. Giustina, A. Consensus, Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 14, 552–561 (2018)CrossRef S. Melmed, M.D. Bronstein, P. Chanson, A. Klibanski, F.F. Casanueva, J.A.H. Wass, C.J. Strasburger, A. Luger, D.R. Clemmons, A. Giustina, A. Consensus, Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol. 14, 552–561 (2018)CrossRef
Metadata
Title
Differential effects of metformin on reductive activity and energy production in pituitary tumor cells compared to myogenic precursors
Authors
Giovanni Tulipano
Simone Paghera
Cristina Missale
Andrea Giustina
Publication date
01-09-2020
Publisher
Springer US
Keyword
Metformin
Published in
Endocrine / Issue 3/2020
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-020-02373-7

Other articles of this Issue 3/2020

Endocrine 3/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine