Skip to main content
Top
Published in: Critical Care 3/2012

Open Access 01-06-2012 | Research

Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs

Authors: Alessandro Protti, Francesco Fortunato, Massimo Monti, Sarah Vecchio, Stefano Gatti, Giacomo P Comi, Rachele De Giuseppe, Luciano Gattinoni

Published in: Critical Care | Issue 3/2012

Login to get access

Abstract

Introduction

Hepatic mitochondrial dysfunction may play a critical role in the pathogenesis of metformin-induced lactic acidosis. However, patients with severe metformin intoxication may have a 30 to 60% decrease in their global oxygen consumption, as for generalized inhibition of mitochondrial respiration. We developed a pig model of severe metformin intoxication to validate this clinical finding and assess mitochondrial function in liver and other tissues.

Methods

Twenty healthy pigs were sedated and mechanically ventilated. Ten were infused with a large dose of metformin (4 to 8 g) and five were not (sham controls). Five others were infused with lactic acid to clarify whether lactic acidosis per se diminishes global oxygen use. Arterial pH, lactatemia, global oxygen consumption (VO2) (metabolic module) and delivery (DO2) (cardiac output by thermodilution) were monitored for nine hours. Oxygen extraction was computed as VO2/DO2. Activities of the main components of the mitochondrial respiratory chain (complex I, II and III, and IV) were measured with spectrophotometry (and expressed relative to citrate synthase activity) in heart, kidney, liver, skeletal muscle and platelets taken at the end of the study.

Results

Pigs infused with metformin (6 ± 2 g; final serum drug level 77 ± 45 mg/L) progressively developed lactic acidosis (final arterial pH 6.93 ± 0.24 and lactate 18 ± 7 mmol/L, P < 0.001 for both). Their VO2 declined over time (from 115 ± 34 to 71 ± 30 ml/min, P < 0.001) despite grossly preserved DO2 (from 269 ± 68 to 239 ± 51 ml/min, P = 0.58). Oxygen extraction accordingly fell from 43 ± 10 to 30 ± 10% (P = 0.008). None of these changes occurred in either sham controls or pigs infused with lactic acid (final arterial pH 6.86 ± 0.16 and lactate 22 ± 3 mmol/L). Metformin intoxication was associated with inhibition of complex I in the liver (P < 0.001), heart (P < 0.001), kidney (P = 0.003), skeletal muscle (P = 0.012) and platelets (P = 0.053). The activity of complex II and III diminished in the liver (P < 0.001), heart (P < 0.001) and kidney (P < 0.005) while that of complex IV declined in the heart (P < 0.001).

Conclusions

Metformin intoxication induces lactic acidosis, inhibits global oxygen consumption and causes mitochondrial dysfunction in liver and other tissues. Lactic acidosis per se does not decrease whole-body respiration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B, American Diabetes Association, European Association for the Study of Diabetes: Medical management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2009, 52: 17-30. 10.1007/s00125-008-1157-yCrossRefPubMed Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B, American Diabetes Association, European Association for the Study of Diabetes: Medical management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2009, 52: 17-30. 10.1007/s00125-008-1157-yCrossRefPubMed
2.
go back to reference Salpeter SR, Greyber E, Pasternak GA, Salpeter EE: Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010, 4: CD002967.PubMed Salpeter SR, Greyber E, Pasternak GA, Salpeter EE: Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010, 4: CD002967.PubMed
3.
go back to reference Peters N, Jay N, Barraud D, Cravoisy A, Nace L, Bollaert PE, Gibot S: Metformin-associated lactic acidosis in an intensive care unit. Crit Care 2008, 12: R149. 10.1186/cc7137PubMedCentralCrossRefPubMed Peters N, Jay N, Barraud D, Cravoisy A, Nace L, Bollaert PE, Gibot S: Metformin-associated lactic acidosis in an intensive care unit. Crit Care 2008, 12: R149. 10.1186/cc7137PubMedCentralCrossRefPubMed
4.
go back to reference Seidowsky A, Nseir S, Houdret N, Fourrier F: Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med 2009, 37: 2191-2196. 10.1097/CCM.0b013e3181a02490CrossRefPubMed Seidowsky A, Nseir S, Houdret N, Fourrier F: Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med 2009, 37: 2191-2196. 10.1097/CCM.0b013e3181a02490CrossRefPubMed
5.
go back to reference Friesecke S, Abel P, Roser M, Felix SB, Runge S: Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care 2010, 14: R226. 10.1186/cc9376PubMedCentralCrossRefPubMed Friesecke S, Abel P, Roser M, Felix SB, Runge S: Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care 2010, 14: R226. 10.1186/cc9376PubMedCentralCrossRefPubMed
6.
go back to reference Lalau JD, Race JM: Lactic acidosis in metformin therapy: searching for a link with metformin in reports of 'metformin-associated lactic acidosis'. Diabetes Obes Metab 2001, 3: 195-201. 10.1046/j.1463-1326.2001.00128.xCrossRefPubMed Lalau JD, Race JM: Lactic acidosis in metformin therapy: searching for a link with metformin in reports of 'metformin-associated lactic acidosis'. Diabetes Obes Metab 2001, 3: 195-201. 10.1046/j.1463-1326.2001.00128.xCrossRefPubMed
7.
go back to reference Protti A, Russo R, Tagliabue P, Vecchio S, Singer M, Rudiger A, Foti G, Rossi A, Mistraletti G, Gattinoni L: Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Crit Care 2010, 14: R22. 10.1186/cc8885PubMedCentralCrossRefPubMed Protti A, Russo R, Tagliabue P, Vecchio S, Singer M, Rudiger A, Foti G, Rossi A, Mistraletti G, Gattinoni L: Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Crit Care 2010, 14: R22. 10.1186/cc8885PubMedCentralCrossRefPubMed
8.
go back to reference Stacpoole PW: Metformin and lactic acidosis: guilt by association? Diabetes Care 1998, 21: 1587-1588. 10.2337/diacare.21.10.1587CrossRefPubMed Stacpoole PW: Metformin and lactic acidosis: guilt by association? Diabetes Care 1998, 21: 1587-1588. 10.2337/diacare.21.10.1587CrossRefPubMed
9.
go back to reference Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003, 63: 844-848. 10.1124/mol.63.4.844CrossRefPubMed Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003, 63: 844-848. 10.1124/mol.63.4.844CrossRefPubMed
10.
go back to reference Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002, 302: 510-515. 10.1124/jpet.102.034140CrossRefPubMed Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002, 302: 510-515. 10.1124/jpet.102.034140CrossRefPubMed
11.
go back to reference El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000, 275: 223-228. 10.1074/jbc.275.1.223CrossRefPubMed El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000, 275: 223-228. 10.1074/jbc.275.1.223CrossRefPubMed
12.
go back to reference Owen MR, Doran E, Halestrap AP: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000, 348: 607-614. 10.1042/0264-6021:3480607PubMedCentralCrossRefPubMed Owen MR, Doran E, Halestrap AP: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000, 348: 607-614. 10.1042/0264-6021:3480607PubMedCentralCrossRefPubMed
13.
go back to reference Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y: Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 2008, 233: 203-210. 10.1016/j.taap.2008.08.013CrossRefPubMed Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y: Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 2008, 233: 203-210. 10.1016/j.taap.2008.08.013CrossRefPubMed
14.
go back to reference Radziuk J, Zhang Z, Wiernsperger N, Pye S: Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997, 46: 1406-1413. 10.2337/diabetes.46.9.1406CrossRefPubMed Radziuk J, Zhang Z, Wiernsperger N, Pye S: Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997, 46: 1406-1413. 10.2337/diabetes.46.9.1406CrossRefPubMed
15.
go back to reference Bailey CJ, Wilcock C, Scarpello JH: Metformin and the intestine. Diabetologia 2008, 51: 1552-1553. 10.1007/s00125-008-1053-5CrossRefPubMed Bailey CJ, Wilcock C, Scarpello JH: Metformin and the intestine. Diabetologia 2008, 51: 1552-1553. 10.1007/s00125-008-1053-5CrossRefPubMed
16.
go back to reference Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council: Guide for the care and use of laboratory animals. Washington; 1996. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council: Guide for the care and use of laboratory animals. Washington; 1996.
17.
go back to reference Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN: Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In Mitochondria: a practical approach. Edited by: Darley-Usmar VM, Rickwood D, Wilson MT. Oxford: IRL Press; 1987:79-112. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN: Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In Mitochondria: a practical approach. Edited by: Darley-Usmar VM, Rickwood D, Wilson MT. Oxford: IRL Press; 1987:79-112.
18.
go back to reference Campise M, Bamonti F, Novembrino C, Ippolito S, Tarantino A, Cornelli U, Lonati S, Cesana BM, Ponticelli C: Oxidative stress in kidney transplant patients. Transplantation 2003, 76: 1474-8. 10.1097/01.TP.0000090344.61975.F0CrossRefPubMed Campise M, Bamonti F, Novembrino C, Ippolito S, Tarantino A, Cornelli U, Lonati S, Cesana BM, Ponticelli C: Oxidative stress in kidney transplant patients. Transplantation 2003, 76: 1474-8. 10.1097/01.TP.0000090344.61975.F0CrossRefPubMed
19.
go back to reference Conover WJ, Iman RL: Rank transformations as a bridge between parametric and non-parametric statistics. American Statistician 1981, 35: 124-129. Conover WJ, Iman RL: Rank transformations as a bridge between parametric and non-parametric statistics. American Statistician 1981, 35: 124-129.
20.
go back to reference Cohen PJ: The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology 1972, 37: 148-177. 10.1097/00000542-197208000-00007CrossRefPubMed Cohen PJ: The metabolic function of oxygen and biochemical lesions of hypoxia. Anesthesiology 1972, 37: 148-177. 10.1097/00000542-197208000-00007CrossRefPubMed
21.
go back to reference Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR: Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and non septic humans. JAMA 1993, 270: 1724-1730. 10.1001/jama.1993.03510140084034CrossRefPubMed Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR: Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and non septic humans. JAMA 1993, 270: 1724-1730. 10.1001/jama.1993.03510140084034CrossRefPubMed
23.
go back to reference James JH, Luchette FA, McCarter FD, Fischer JE: Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999, 354: 505-508. 10.1016/S0140-6736(98)91132-1CrossRefPubMed James JH, Luchette FA, McCarter FD, Fischer JE: Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999, 354: 505-508. 10.1016/S0140-6736(98)91132-1CrossRefPubMed
24.
go back to reference Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE: Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005, 365: 871-875. 10.1016/S0140-6736(05)71045-XCrossRefPubMed Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE: Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005, 365: 871-875. 10.1016/S0140-6736(05)71045-XCrossRefPubMed
25.
go back to reference Peddy SB, Rigby MR, Shaffner DH: Acute cyanide poisoning. Pediatr Crit Care Med 2006, 7: 79-82. 10.1097/01.PCC.0000192508.92993.D1CrossRefPubMed Peddy SB, Rigby MR, Shaffner DH: Acute cyanide poisoning. Pediatr Crit Care Med 2006, 7: 79-82. 10.1097/01.PCC.0000192508.92993.D1CrossRefPubMed
26.
go back to reference Wilcock C, Bailey CJ: Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994, 24: 49-57. 10.3109/00498259409043220CrossRefPubMed Wilcock C, Bailey CJ: Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994, 24: 49-57. 10.3109/00498259409043220CrossRefPubMed
27.
go back to reference Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsinn C: Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004, 53: 1052-1059. 10.2337/diabetes.53.4.1052CrossRefPubMed Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsinn C: Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004, 53: 1052-1059. 10.2337/diabetes.53.4.1052CrossRefPubMed
28.
go back to reference El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X: Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 2008, 34: 77-87. 10.1007/s12031-007-9002-1CrossRefPubMed El-Mir MY, Detaille D, R-Villanueva G, Delgado-Esteban M, Guigas B, Attia S, Fontaine E, Almeida A, Leverve X: Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci 2008, 34: 77-87. 10.1007/s12031-007-9002-1CrossRefPubMed
29.
go back to reference Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, Leverve X, López-Novoa JM, El-Mir MY: Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 2010, 77: 861-869. 10.1038/ki.2010.11CrossRefPubMed Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, Leverve X, López-Novoa JM, El-Mir MY: Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 2010, 77: 861-869. 10.1038/ki.2010.11CrossRefPubMed
30.
go back to reference Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X: Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005, 54: 2179-2187. 10.2337/diabetes.54.7.2179CrossRefPubMed Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X: Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005, 54: 2179-2187. 10.2337/diabetes.54.7.2179CrossRefPubMed
31.
go back to reference Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP, Abraham E: Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med 2008, 178: 168-179. 10.1164/rccm.200710-1602OCPubMedCentralCrossRefPubMed Zmijewski JW, Lorne E, Zhao X, Tsuruta Y, Sha Y, Liu G, Siegal GP, Abraham E: Mitochondrial respiratory complex I regulates neutrophil activation and severity of lung injury. Am J Respir Crit Care Med 2008, 178: 168-179. 10.1164/rccm.200710-1602OCPubMedCentralCrossRefPubMed
32.
go back to reference Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M: Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 2007, 150: 1031-1043.PubMedCentralCrossRefPubMed Hinke SA, Martens GA, Cai Y, Finsi J, Heimberg H, Pipeleers D, Van de Casteele M: Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br J Pharmacol 2007, 150: 1031-1043.PubMedCentralCrossRefPubMed
33.
go back to reference Huckabee WE: Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest 1958, 37: 244-254. 10.1172/JCI103603PubMedCentralCrossRefPubMed Huckabee WE: Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest 1958, 37: 244-254. 10.1172/JCI103603PubMedCentralCrossRefPubMed
34.
go back to reference Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006, 101: 1685-1692.CrossRefPubMed Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S: Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006, 101: 1685-1692.CrossRefPubMed
35.
go back to reference Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO: Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 2003, 299: 896-899. 10.1126/science.1079368CrossRefPubMed Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO: Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 2003, 299: 896-899. 10.1126/science.1079368CrossRefPubMed
36.
go back to reference Clementi E, Brown GC, Feelisch M, Moncada S: Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 1998, 95: 7631-7636. 10.1073/pnas.95.13.7631PubMedCentralCrossRefPubMed Clementi E, Brown GC, Feelisch M, Moncada S: Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 1998, 95: 7631-7636. 10.1073/pnas.95.13.7631PubMedCentralCrossRefPubMed
37.
go back to reference Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG IV, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH: Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 2004, 279: 43940-51. 10.1074/jbc.M404421200CrossRefPubMed Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG IV, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH: Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 2004, 279: 43940-51. 10.1074/jbc.M404421200CrossRefPubMed
38.
go back to reference Castro L, Demicheli V, Tórtora V, Radi R: Mitochondrial protein tyrosine nitration. Free Radic Res 2011, 45: 37-52. 10.3109/10715762.2010.516254CrossRefPubMed Castro L, Demicheli V, Tórtora V, Radi R: Mitochondrial protein tyrosine nitration. Free Radic Res 2011, 45: 37-52. 10.3109/10715762.2010.516254CrossRefPubMed
39.
go back to reference Ensinger H, Weichel T, Lindner KH, Grünert A, Ahnefeld FW: Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit Care Med 1993, 21: 1502-1508. 10.1097/00003246-199310000-00018CrossRefPubMed Ensinger H, Weichel T, Lindner KH, Grünert A, Ahnefeld FW: Effects of norepinephrine, epinephrine, and dopamine infusions on oxygen consumption in volunteers. Crit Care Med 1993, 21: 1502-1508. 10.1097/00003246-199310000-00018CrossRefPubMed
40.
go back to reference Porta F, Bracht H, Weikert C, Beck M, Takala J, Brandt S, Hiltebrand LB, Jakob SM: Effects of endotoxin and catecholamines on hepatic mitochondrial respiration. Inflammation 2009, 32: 315-321. 10.1007/s10753-009-9138-yCrossRefPubMed Porta F, Bracht H, Weikert C, Beck M, Takala J, Brandt S, Hiltebrand LB, Jakob SM: Effects of endotoxin and catecholamines on hepatic mitochondrial respiration. Inflammation 2009, 32: 315-321. 10.1007/s10753-009-9138-yCrossRefPubMed
41.
go back to reference Vuda M, Brander L, Schröeder R, Jakob SM, Takala J, Djafarzadeh S: Effects of catecholamines on hepatic and skeletal muscle mitochondrial respiration after prolonged exposure to faecal peritonitis in pigs. Innate Immun 2012, 18: 217-230. 10.1177/1753425911398279CrossRefPubMed Vuda M, Brander L, Schröeder R, Jakob SM, Takala J, Djafarzadeh S: Effects of catecholamines on hepatic and skeletal muscle mitochondrial respiration after prolonged exposure to faecal peritonitis in pigs. Innate Immun 2012, 18: 217-230. 10.1177/1753425911398279CrossRefPubMed
Metadata
Title
Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs
Authors
Alessandro Protti
Francesco Fortunato
Massimo Monti
Sarah Vecchio
Stefano Gatti
Giacomo P Comi
Rachele De Giuseppe
Luciano Gattinoni
Publication date
01-06-2012
Publisher
BioMed Central
Published in
Critical Care / Issue 3/2012
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc11332

Other articles of this Issue 3/2012

Critical Care 3/2012 Go to the issue