Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 10/2012

01-10-2012 | Original article

Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial

Authors: Eva Ellebaek, Lotte Engell-Noerregaard, Trine Zeeberg Iversen, Thomas Moerch Froesig, Shamaila Munir, Sine Reker Hadrup, Mads Hald Andersen, Inge Marie Svane

Published in: Cancer Immunology, Immunotherapy | Issue 10/2012

Login to get access

Abstract

Dendritic cells (DC) are the most potent antigen presenting cells and have proven effective in stimulation of specific immune responses in vivo. Competing immune inhibition could limit the clinical efficacy of DC vaccination. In this phase II trial, metronomic Cyclophosphamide and a Cox-2 inhibitor have been added to a DC vaccine with the intend to dampen immunosuppressive mechanisms. Twenty-eight patients with progressive metastatic melanoma were treated with autologous DCs pulsed with survivin, hTERT, and p53-derived peptides (HLA-A2+) or tumor lysate (HLA-A2). Concomitantly the patients were treated with IL-2, Cyclophosphamide, and Celecoxib. The treatment was safe and tolerable. Sixteen patients (57 %) achieved stable disease (SD) at 1st evaluation and 8 patients had prolonged SD (7–13.7 months). The median OS was 9.4 months. Patients with SD had an OS of 10.5 months while patients with progressive disease (PD) had an OS of 6.0 months (p = 0.048) even though there were no differences in prognostic factors between the two groups. Despite the use of metronomic Cyclophosphamide, regulatory T cells did not decrease during treatment. Indirect IFN-γ ELISPOT assays showed a general increase in immune responses from baseline to the time of 4th vaccination. Induction of antigen-specific immune responses was seen in 9 out of 15 screened HLA-A2+ patients. In conclusion, the number of patients obtaining SD more than doubled and 6-month survival significantly increased compared to a previous trial without Cyclophosphamide and Celecoxib. A general increase in immune responses against the tested peptides was observed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee ML, Tomsu K, Von Eschen KB (2000) Duration of survival for disseminated malignant melanoma: results of a meta-analysis. Melanoma Res 10:81–92PubMed Lee ML, Tomsu K, Von Eschen KB (2000) Duration of survival for disseminated malignant melanoma: results of a meta-analysis. Melanoma Res 10:81–92PubMed
2.
go back to reference Agarwala SS (2009) Current systemic therapy for metastatic melanoma. Expert Rev Anticancer Ther 9:587–595PubMedCrossRef Agarwala SS (2009) Current systemic therapy for metastatic melanoma. Expert Rev Anticancer Ther 9:587–595PubMedCrossRef
3.
go back to reference Quirt I, Verma S, Petrella T, Bak K, Charette M (2007) Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist 12:1114–1123PubMedCrossRef Quirt I, Verma S, Petrella T, Bak K, Charette M (2007) Temozolomide for the treatment of metastatic melanoma: a systematic review. Oncologist 12:1114–1123PubMedCrossRef
4.
go back to reference Anderson CM, Buzaid AC, Legha SS (1995) Systemic treatments for advanced cutaneous melanoma. Oncology (Williston Park) 9:1149–1158 Anderson CM, Buzaid AC, Legha SS (1995) Systemic treatments for advanced cutaneous melanoma. Oncology (Williston Park) 9:1149–1158
5.
go back to reference Dutcher J (2002) Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 16:4–10 Dutcher J (2002) Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park) 16:4–10
6.
go back to reference Gajewski TF (2010) Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell Melanoma Res 23:580–581PubMedCrossRef Gajewski TF (2010) Improved melanoma survival at last! Ipilimumab and a paradigm shift for immunotherapy. Pigment Cell Melanoma Res 23:580–581PubMedCrossRef
7.
go back to reference Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCrossRef
9.
go back to reference Osada T, Clay TM, Woo CY, Morse MA, Lyerly HK (2006) Dendritic cell-based immunotherapy. Int Rev Immunol 25:377–413PubMedCrossRef Osada T, Clay TM, Woo CY, Morse MA, Lyerly HK (2006) Dendritic cell-based immunotherapy. Int Rev Immunol 25:377–413PubMedCrossRef
10.
11.
go back to reference Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedCrossRef Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174PubMedCrossRef
12.
go back to reference Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414PubMedCrossRef Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107:2409–2414PubMedCrossRef
13.
go back to reference Berntsen A, Trepiakas R, Wenandy L, Geertsen PF, Thor SP, Andersen MH et al (2008) Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 31:771–780PubMedCrossRef Berntsen A, Trepiakas R, Wenandy L, Geertsen PF, Thor SP, Andersen MH et al (2008) Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 31:771–780PubMedCrossRef
14.
go back to reference Trepiakas R, Berntsen A, Hadrup SR, Bjorn J, Geertsen PF, Straten PT et al (2010) Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy 12:721–734PubMedCrossRef Trepiakas R, Berntsen A, Hadrup SR, Bjorn J, Geertsen PF, Straten PT et al (2010) Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy 12:721–734PubMedCrossRef
15.
16.
go back to reference Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078PubMedCrossRef Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078PubMedCrossRef
17.
go back to reference Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767PubMed Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767PubMed
18.
go back to reference Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedCrossRef Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648PubMedCrossRef
19.
go back to reference Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604PubMedCrossRef Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604PubMedCrossRef
20.
go back to reference Lutsiak ME, Semnani RT, De PR, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRef Lutsiak ME, Semnani RT, De PR, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868PubMedCrossRef
21.
go back to reference Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308PubMed Denkert C, Kobel M, Berger S, Siegert A, Leclere A, Trefzer U et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308PubMed
22.
go back to reference Goulet AC, Einsphar JG, Alberts DS, Beas A, Burk C, Bhattacharyya A et al (2003) Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol Ther 2:713–718PubMed Goulet AC, Einsphar JG, Alberts DS, Beas A, Burk C, Bhattacharyya A et al (2003) Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biol Ther 2:713–718PubMed
23.
go back to reference Becker MR, Siegelin MD, Rompel R, Enk AH, Gaiser T (2009) COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res 19:8–16PubMedCrossRef Becker MR, Siegelin MD, Rompel R, Enk AH, Gaiser T (2009) COX-2 expression in malignant melanoma: a novel prognostic marker? Melanoma Res 19:8–16PubMedCrossRef
24.
go back to reference Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873PubMedCrossRef Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873PubMedCrossRef
25.
go back to reference Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+ CD4+ CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254PubMed Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+ CD4+ CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254PubMed
26.
go back to reference Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220PubMedCrossRef Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220PubMedCrossRef
27.
go back to reference Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRef Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513PubMedCrossRef
28.
go back to reference Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12:246–251PubMedCrossRef Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12:246–251PubMedCrossRef
29.
go back to reference Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van VJ, Hombrink P et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526PubMedCrossRef Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van VJ, Hombrink P et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526PubMedCrossRef
30.
go back to reference Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872PubMed Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872PubMed
31.
go back to reference McCutcheon M, Wehner N, Wensky A, Kushner M, Doan S, Hsiao L et al (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210:149–166PubMedCrossRef McCutcheon M, Wehner N, Wensky A, Kushner M, Doan S, Hsiao L et al (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210:149–166PubMedCrossRef
32.
go back to reference Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRef Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345PubMedCrossRef
33.
go back to reference Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRef Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480PubMedCrossRef
34.
go back to reference Manola J, Atkins M, Ibrahim J, Kirkwood J (2000) Prognostic factors in metastatic melanoma: a pooled analysis of Eastern cooperative oncology group trials. J Clin Oncol 18:3782–3793PubMed Manola J, Atkins M, Ibrahim J, Kirkwood J (2000) Prognostic factors in metastatic melanoma: a pooled analysis of Eastern cooperative oncology group trials. J Clin Oncol 18:3782–3793PubMed
36.
go back to reference Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRef Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E et al (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRef
37.
go back to reference Schrama D, Pedersen LO, Keikavoussi P, Andersen MH, Straten Pt, Brocker EB et al (2002) Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 119:1443–1448PubMedCrossRef Schrama D, Pedersen LO, Keikavoussi P, Andersen MH, Straten Pt, Brocker EB et al (2002) Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 119:1443–1448PubMedCrossRef
38.
go back to reference Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE et al (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27:945–952PubMedCrossRef Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE et al (2009) Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 27:945–952PubMedCrossRef
39.
go back to reference Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2010) Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol 2010:504979PubMedCrossRef Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2010) Unexpected high response rate to traditional therapy after dendritic cell-based vaccine in advanced melanoma: update of clinical outcome and subgroup analysis. Clin Dev Immunol 2010:504979PubMedCrossRef
40.
go back to reference Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2011) Dendritic cell-based vaccine in advanced melanoma: update of clinical outcome. Melanoma Res 21:524–529PubMedCrossRef Ridolfi L, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E et al (2011) Dendritic cell-based vaccine in advanced melanoma: update of clinical outcome. Melanoma Res 21:524–529PubMedCrossRef
41.
go back to reference Engell-Noerregaard L, Hansen TH, Andersen MH, Thor SP, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14PubMedCrossRef Engell-Noerregaard L, Hansen TH, Andersen MH, Thor SP, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14PubMedCrossRef
42.
go back to reference Hersey P, Halliday G, Farrelly M, DeSilva C, Lett M, Menzies S (2008) Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol Immunother 57:1039–1051PubMedCrossRef Hersey P, Halliday G, Farrelly M, DeSilva C, Lett M, Menzies S (2008) Phase I/II study of treatment with matured dendritic cells with or without low dose IL-2 in patients with disseminated melanoma. Cancer Immunol Immunother 57:1039–1051PubMedCrossRef
43.
go back to reference Andersen MH, Gehl J, Reker S, Pedersen LO, Becker JC, Geertsen P et al (2003) Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol 13:449–459PubMedCrossRef Andersen MH, Gehl J, Reker S, Pedersen LO, Becker JC, Geertsen P et al (2003) Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol 13:449–459PubMedCrossRef
44.
go back to reference Iniguez MA, Punzon C, Fresno M (1999) Induction of cyclooxygenase-2 on activated T lymphocytes: regulation of T cell activation by cyclooxygenase-2 inhibitors. J Immunol 163:111–119PubMed Iniguez MA, Punzon C, Fresno M (1999) Induction of cyclooxygenase-2 on activated T lymphocytes: regulation of T cell activation by cyclooxygenase-2 inhibitors. J Immunol 163:111–119PubMed
45.
go back to reference Paccani SR, Boncristiano M, Ulivieri C, D’Elios MM, Del PG, Baldari CT (2002) Nonsteroidal anti-inflammatory drugs suppress T-cell activation by inhibiting p38 MAPK induction. J Biol Chem 277:1509–1513PubMedCrossRef Paccani SR, Boncristiano M, Ulivieri C, D’Elios MM, Del PG, Baldari CT (2002) Nonsteroidal anti-inflammatory drugs suppress T-cell activation by inhibiting p38 MAPK induction. J Biol Chem 277:1509–1513PubMedCrossRef
46.
go back to reference Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, Holm M et al (2011) An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol 85:6557–6566PubMedCrossRef Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, Holm M et al (2011) An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol 85:6557–6566PubMedCrossRef
47.
go back to reference Kleinewietfeld M, Starke M, Di MD, Borsellino G, Battistini L, Rotzschke O et al (2009) CD49d provides access to “untouched” human Foxp3 + Treg free of contaminating effector cells. Blood 113:827–836PubMedCrossRef Kleinewietfeld M, Starke M, Di MD, Borsellino G, Battistini L, Rotzschke O et al (2009) CD49d provides access to “untouched” human Foxp3 + Treg free of contaminating effector cells. Blood 113:827–836PubMedCrossRef
48.
go back to reference Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265PubMedCrossRef Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265PubMedCrossRef
49.
go back to reference Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRef Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59PubMedCrossRef
51.
go back to reference Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M et al (2010) Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 33:817–827PubMedCrossRef Finkelstein SE, Carey T, Fricke I, Yu D, Goetz D, Gratz M et al (2010) Changes in dendritic cell phenotype after a new high-dose weekly schedule of interleukin-2 therapy for kidney cancer and melanoma. J Immunother 33:817–827PubMedCrossRef
52.
go back to reference Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307PubMedCrossRef Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307PubMedCrossRef
53.
go back to reference de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100PubMed
54.
go back to reference Wadler S, Einzig AI, Dutcher JP, Ciobanu N, Landau L, Wiernik PH (1988) Phase II trial of recombinant alpha-2b-interferon and low-dose cyclophosphamide in advanced melanoma and renal cell carcinoma. Am J Clin Oncol 11:55–59PubMedCrossRef Wadler S, Einzig AI, Dutcher JP, Ciobanu N, Landau L, Wiernik PH (1988) Phase II trial of recombinant alpha-2b-interferon and low-dose cyclophosphamide in advanced melanoma and renal cell carcinoma. Am J Clin Oncol 11:55–59PubMedCrossRef
55.
go back to reference Lindemann A, Hoffken K, Schmidt RE, Diehl V, Kloke O, Gamm H et al (1989) A phase-II study of low-dose cyclophosphamide and recombinant human interleukin-2 in metastatic renal cell carcinoma and malignant melanoma. Cancer Immunol Immunother 28:275–281PubMedCrossRef Lindemann A, Hoffken K, Schmidt RE, Diehl V, Kloke O, Gamm H et al (1989) A phase-II study of low-dose cyclophosphamide and recombinant human interleukin-2 in metastatic renal cell carcinoma and malignant melanoma. Cancer Immunol Immunother 28:275–281PubMedCrossRef
56.
go back to reference Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40:1825–1836PubMedCrossRef Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40:1825–1836PubMedCrossRef
57.
go back to reference Jilaveanu LB, Aziz SA, Kluger HM (2009) Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol 27:614–625PubMedCrossRef Jilaveanu LB, Aziz SA, Kluger HM (2009) Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol 27:614–625PubMedCrossRef
58.
go back to reference Powell DJ Jr, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (2007) Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–447PubMedCrossRef Powell DJ Jr, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (2007) Inability to mediate prolonged reduction of regulatory T Cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–447PubMedCrossRef
59.
60.
go back to reference Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y et al (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061PubMedCrossRef Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y et al (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061PubMedCrossRef
61.
go back to reference Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMed Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMed
Metadata
Title
Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide: results from a phase II trial
Authors
Eva Ellebaek
Lotte Engell-Noerregaard
Trine Zeeberg Iversen
Thomas Moerch Froesig
Shamaila Munir
Sine Reker Hadrup
Mads Hald Andersen
Inge Marie Svane
Publication date
01-10-2012
Publisher
Springer-Verlag
Published in
Cancer Immunology, Immunotherapy / Issue 10/2012
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-012-1242-4

Other articles of this Issue 10/2012

Cancer Immunology, Immunotherapy 10/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine