Skip to main content
Top
Published in: Journal of Cancer Research and Clinical Oncology 7/2023

Open Access 12-08-2022 | Metastasis | Research

Optical coherence tomography and convolutional neural networks can differentiate colorectal liver metastases from liver parenchyma ex vivo

Authors: Iakovos Amygdalos, Enno Hachgenei, Luisa Burkl, David Vargas, Paul Goßmann, Laura I. Wolff, Mariia Druzenko, Maik Frye, Niels König, Robert H. Schmitt, Alexandros Chrysos, Katharina Jöchle, Tom F. Ulmer, Andreas Lambertz, Ruth Knüchel-Clarke, Ulf P. Neumann, Sven A. Lang

Published in: Journal of Cancer Research and Clinical Oncology | Issue 7/2023

Login to get access

Abstract

Purpose

Optical coherence tomography (OCT) is an imaging technology based on low-coherence interferometry, which provides non-invasive, high-resolution cross-sectional images of biological tissues. A potential clinical application is the intraoperative examination of resection margins, as a real-time adjunct to histological examination. In this ex vivo study, we investigated the ability of OCT to differentiate colorectal liver metastases (CRLM) from healthy liver parenchyma, when combined with convolutional neural networks (CNN).

Methods

Between June and August 2020, consecutive adult patients undergoing elective liver resections for CRLM were included in this study. Fresh resection specimens were scanned ex vivo, before fixation in formalin, using a table-top OCT device at 1310 nm wavelength. Scanned areas were marked and histologically examined. A pre-trained CNN (Xception) was used to match OCT scans to their corresponding histological diagnoses. To validate the results, a stratified k-fold cross-validation (CV) was carried out.

Results

A total of 26 scans (containing approx. 26,500 images in total) were obtained from 15 patients. Of these, 13 were of normal liver parenchyma and 13 of CRLM. The CNN distinguished CRLM from healthy liver parenchyma with an F1-score of 0.93 (0.03), and a sensitivity and specificity of 0.94 (0.04) and 0.93 (0.04), respectively.

Conclusion

Optical coherence tomography combined with CNN can distinguish between healthy liver and CRLM with great accuracy ex vivo. Further studies are needed to improve upon these results and develop in vivo diagnostic technologies, such as intraoperative scanning of resection margins.
Appendix
Available only for authorised users
Literature
go back to reference Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, Ashrafian H, Darzi A (2021) Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 4(1):65CrossRefPubMedPubMedCentral Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King D, Ashrafian H, Darzi A (2021) Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 4(1):65CrossRefPubMedPubMedCentral
go back to reference Alqudah AM (2020) AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med Biol Eng Comput 58(1):41–53CrossRefPubMed Alqudah AM (2020) AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images. Med Biol Eng Comput 58(1):41–53CrossRefPubMed
go back to reference Amygdalos I (2014) Detection and classification of gastrointestinal cancer and other pathologies through quantitative analysis of optical coherence tomography data and goniophotometry. PhD Thesis, Department of Surgery & Cancer, Imperial College London. https://doi.org/10.25560/27257 Amygdalos I (2014) Detection and classification of gastrointestinal cancer and other pathologies through quantitative analysis of optical coherence tomography data and goniophotometry. PhD Thesis, Department of Surgery & Cancer, Imperial College London. https://​doi.​org/​10.​25560/​27257
go back to reference Beaulieu-Jones BK, Yuan W, Brat GA, Beam AL, Weber G, Ruffin M, Kohane IS (2021) Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? NPJ Digit Med 4(1):62CrossRefPubMedPubMedCentral Beaulieu-Jones BK, Yuan W, Brat GA, Beam AL, Weber G, Ruffin M, Kohane IS (2021) Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians? NPJ Digit Med 4(1):62CrossRefPubMedPubMedCentral
go back to reference Bingham G, Shetye A, Suresh R, Mirnezami R (2020) Impact of primary tumour location on colorectal liver metastases: a systematic review. World J Clin Oncol 11(5):294–307CrossRefPubMedPubMedCentral Bingham G, Shetye A, Suresh R, Mirnezami R (2020) Impact of primary tumour location on colorectal liver metastases: a systematic review. World J Clin Oncol 11(5):294–307CrossRefPubMedPubMedCentral
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424CrossRefPubMed
go back to reference Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079–2107 Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079–2107
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29CrossRefPubMed Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29CrossRefPubMed
go back to reference Fonollà R, Scheeve T, Struyvenberg MR, Curvers WL, de Groof AJ, van der Sommen F, Schoon EJ, Bergman JJGHM, de With PHN (2019) "Ensemble of deep convolutional neural networks for classification of early Barrett’s neoplasia using volumetric laser endomicroscopy. Appl Sci 9(11):2183. https://doi.org/10.3390/app9112183CrossRef Fonollà R, Scheeve T, Struyvenberg MR, Curvers WL, de Groof AJ, van der Sommen F, Schoon EJ, Bergman JJGHM, de With PHN (2019) "Ensemble of deep convolutional neural networks for classification of early Barrett’s neoplasia using volumetric laser endomicroscopy. Appl Sci 9(11):2183. https://​doi.​org/​10.​3390/​app9112183CrossRef
go back to reference Garcia-Allende PB, Amygdalos I, Dhanapala H, Goldin RD, Hanna GB, Elson DS (2011) Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues. Biomed Opt Express 2(10):2821–2836CrossRefPubMedPubMedCentral Garcia-Allende PB, Amygdalos I, Dhanapala H, Goldin RD, Hanna GB, Elson DS (2011) Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues. Biomed Opt Express 2(10):2821–2836CrossRefPubMedPubMedCentral
go back to reference Genina EA, Terentyuk GS, Khlebtsov BN, Bashkatov AN, Tuchin VV (2012) Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography. Quantum Electron 42(6):478–483CrossRef Genina EA, Terentyuk GS, Khlebtsov BN, Bashkatov AN, Tuchin VV (2012) Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography. Quantum Electron 42(6):478–483CrossRef
go back to reference Goodfellow, I. B. Y. C. A. (2016). Deep learning. Goodfellow, I. B. Y. C. A. (2016). Deep learning.
go back to reference Hitpass L, Heise D, Schulze-Hagen M, Pedersoli F, Ulmer F, Amygdalos I, Isfort P, Neumann U, Kuhl C, Bruners P, Zimmermann M (2020) Primary tumor location is a prognostic factor for intrahepatic progression-free survival in patients with colorectal liver metastases undergoing portal vein embolization as preparation for major hepatic surgery. Cancers (basel) 12(6):1638. https://doi.org/10.3390/cancers12061638CrossRefPubMed Hitpass L, Heise D, Schulze-Hagen M, Pedersoli F, Ulmer F, Amygdalos I, Isfort P, Neumann U, Kuhl C, Bruners P, Zimmermann M (2020) Primary tumor location is a prognostic factor for intrahepatic progression-free survival in patients with colorectal liver metastases undergoing portal vein embolization as preparation for major hepatic surgery. Cancers (basel) 12(6):1638. https://​doi.​org/​10.​3390/​cancers12061638CrossRefPubMed
go back to reference Hofer IS, Lee C, Gabel E, Baldi P, Cannesson M (2020) Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. NPJ Digit Med 3:58CrossRefPubMedPubMedCentral Hofer IS, Lee C, Gabel E, Baldi P, Cannesson M (2020) Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. NPJ Digit Med 3:58CrossRefPubMedPubMedCentral
go back to reference Jain M, Shukla N, Manzoor M, Nadolny S, Mukherjee S (2011) Modified full-field optical coherence tomography: a novel tool for rapid histology of tissues. J Pathol Inform 2:28CrossRefPubMedPubMedCentral Jain M, Shukla N, Manzoor M, Nadolny S, Mukherjee S (2011) Modified full-field optical coherence tomography: a novel tool for rapid histology of tissues. J Pathol Inform 2:28CrossRefPubMedPubMedCentral
go back to reference Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195CrossRefPubMedPubMedCentral Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195CrossRefPubMedPubMedCentral
go back to reference Kufcsak A, Bagnaninchi P, Erdogan AT, Henderson RK, Krstajic N (2021) Time-resolved spectral-domain optical coherence tomography with CMOS SPAD sensors. Opt Express 29(12):18720–18733CrossRefPubMed Kufcsak A, Bagnaninchi P, Erdogan AT, Henderson RK, Krstajic N (2021) Time-resolved spectral-domain optical coherence tomography with CMOS SPAD sensors. Opt Express 29(12):18720–18733CrossRefPubMed
go back to reference Le D, Son T, Yao X (2021) Machine learning in optical coherence tomography angiography. Exp Biol Med (maywood) 246(20):2170–2183CrossRefPubMed Le D, Son T, Yao X (2021) Machine learning in optical coherence tomography angiography. Exp Biol Med (maywood) 246(20):2170–2183CrossRefPubMed
go back to reference Lee KS, Suchett-Kaye I, Abbadi R, Finch-Jones M, Pope I, Strickland A, Rees J (2020) Microscopic resection margins adversely influence survival rates after surgery for colorectal liver metastases: an open ambidirectional cohort study. Int J Surg 83:8–14CrossRefPubMed Lee KS, Suchett-Kaye I, Abbadi R, Finch-Jones M, Pope I, Strickland A, Rees J (2020) Microscopic resection margins adversely influence survival rates after surgery for colorectal liver metastases: an open ambidirectional cohort study. Int J Surg 83:8–14CrossRefPubMed
go back to reference Martucci NJ, Morgan K, Anderson GW, Hayes PC, Plevris JN, Nelson LJ, Bagnaninchi PO (2018) Nondestructive optical toxicity assays of 3D liver spheroids with optical coherence tomography. Adv Biosyst 2(3):1700212CrossRef Martucci NJ, Morgan K, Anderson GW, Hayes PC, Plevris JN, Nelson LJ, Bagnaninchi PO (2018) Nondestructive optical toxicity assays of 3D liver spheroids with optical coherence tomography. Adv Biosyst 2(3):1700212CrossRef
go back to reference Mogler C, Flechtenmacher C, Schirmacher P, Bergmann F (2012) Frozen section diagnostics in visceral surgery. Liver, bile ducts and pancreas. Pathologe 33(5):413–423CrossRefPubMed Mogler C, Flechtenmacher C, Schirmacher P, Bergmann F (2012) Frozen section diagnostics in visceral surgery. Liver, bile ducts and pancreas. Pathologe 33(5):413–423CrossRefPubMed
go back to reference Moller J, Bartsch A, Lenz M, Tischoff I, Krug R, Welp H, Hofmann MR, Schmieder K, Miller D (2021) Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. Int J Comput Assist Radiol Surg 16(9):1517–1526CrossRefPubMedPubMedCentral Moller J, Bartsch A, Lenz M, Tischoff I, Krug R, Welp H, Hofmann MR, Schmieder K, Miller D (2021) Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. Int J Comput Assist Radiol Surg 16(9):1517–1526CrossRefPubMedPubMedCentral
go back to reference Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507PubMed Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38(7):500–507PubMed
go back to reference Mu N, Gao WR, Zhou YW (2019) Non-invasive observation of human tissue samples with full field optical coherence tomography. Chin J Electron 28(5):987–992CrossRef Mu N, Gao WR, Zhou YW (2019) Non-invasive observation of human tissue samples with full field optical coherence tomography. Chin J Electron 28(5):987–992CrossRef
go back to reference Mukherjee P, Miyazawa A, Fukuda S, Yamashita T, Lukmanto D, Okada K, El-Sadek IA, Zhu L, Makita S, Oshika T, Yasuno Y (2021) Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography. Sci Rep 11(1):20054CrossRefPubMedPubMedCentral Mukherjee P, Miyazawa A, Fukuda S, Yamashita T, Lukmanto D, Okada K, El-Sadek IA, Zhu L, Makita S, Oshika T, Yasuno Y (2021) Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography. Sci Rep 11(1):20054CrossRefPubMedPubMedCentral
go back to reference Murphy KP (2013) Machine learning: a probabilistic perspective. MIT Press, Cambridge Murphy KP (2013) Machine learning: a probabilistic perspective. MIT Press, Cambridge
go back to reference Rahman SA, Walker RC, Lloyd MA, Grace BL, van Boxel GI, Kingma BF, Ruurda JP, van Hillegersberg R, Harris S, Parsons S, Mercer S, Griffiths EA, O'Neill JR, Turkington R, Fitzgerald RC, Underwood TJ; OCCAMS Consortium (2020) Machine learning to predict early recurrence after oesophageal cancer surgery. Br J Surg 107(8):1042–1052. https://doi.org/10.1002/bjs.11461 Rahman SA, Walker RC, Lloyd MA, Grace BL, van Boxel GI, Kingma BF, Ruurda JP, van Hillegersberg R, Harris S, Parsons S, Mercer S, Griffiths EA, O'Neill JR, Turkington R, Fitzgerald RC, Underwood TJ; OCCAMS Consortium (2020) Machine learning to predict early recurrence after oesophageal cancer surgery. Br J Surg 107(8):1042–1052. https://​doi.​org/​10.​1002/​bjs.​11461
go back to reference Saratxaga CL, Bote J, Ortega-Morán JF, Picón A, Terradillos E, del Río NA, Andraka N, Garrote E, Conde OM (2021) Characterization of optical coherence tomography images for colon lesion differentiation under deep learning. Appl Sci 11(7):3119. https://doi.org/10.3390/app11073119CrossRef Saratxaga CL, Bote J, Ortega-Morán JF, Picón A, Terradillos E, del Río NA, Andraka N, Garrote E, Conde OM (2021) Characterization of optical coherence tomography images for colon lesion differentiation under deep learning. Appl Sci 11(7):3119. https://​doi.​org/​10.​3390/​app11073119CrossRef
go back to reference Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, McEvoy D, Stylianopoulos T, Munn LL, Dutta S, Jain RK (2021) Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med 4(1):87CrossRefPubMedPubMedCentral Subudhi S, Verma A, Patel AB, Hardin CC, Khandekar MJ, Lee H, McEvoy D, Stylianopoulos T, Munn LL, Dutta S, Jain RK (2021) Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med 4(1):87CrossRefPubMedPubMedCentral
go back to reference Suzuki S, Abe K (1985) Topological structural analysis of digitized binary images by border following. Comput vis Gr Image Process 30(1):32–46CrossRef Suzuki S, Abe K (1985) Topological structural analysis of digitized binary images by border following. Comput vis Gr Image Process 30(1):32–46CrossRef
go back to reference Tharwat A (2020) Classification assessment methods. App Comput Inf 17(1):168–192 Tharwat A (2020) Classification assessment methods. App Comput Inf 17(1):168–192
go back to reference VanRossum G, Drake FL (2010) The Python language reference. Python Software Foundation, Hampton VanRossum G, Drake FL (2010) The Python language reference. Python Software Foundation, Hampton
go back to reference Wu CC, Wang YM, Lu LS, Sun CW, Lu CW, Tsai MT, Yang CC (2007) Tissue birefringence of hypercholesterolemic rat liver measured with polarization-sensitive optical coherence tomography. J Biomed Opt 12(6):064022CrossRefPubMed Wu CC, Wang YM, Lu LS, Sun CW, Lu CW, Tsai MT, Yang CC (2007) Tissue birefringence of hypercholesterolemic rat liver measured with polarization-sensitive optical coherence tomography. J Biomed Opt 12(6):064022CrossRefPubMed
go back to reference Wulczyn E, Steiner DF, Moran M, Plass M, Reihs R, Tan F, Flament-Auvigne I, Brown T, Regitnig P, Chen PC, Hegde N, Sadhwani A, MacDonald R, Ayalew B, Corrado GS, Peng LH, Tse D, Muller H, Xu Z, Liu Y, Stumpe MC, Zatloukal K, Mermel CH (2021) Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digit Med 4(1):71CrossRefPubMedPubMedCentral Wulczyn E, Steiner DF, Moran M, Plass M, Reihs R, Tan F, Flament-Auvigne I, Brown T, Regitnig P, Chen PC, Hegde N, Sadhwani A, MacDonald R, Ayalew B, Corrado GS, Peng LH, Tse D, Muller H, Xu Z, Liu Y, Stumpe MC, Zatloukal K, Mermel CH (2021) Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digit Med 4(1):71CrossRefPubMedPubMedCentral
go back to reference Zeng Y, Chapman WC Jr, Lin Y, Li S, Mutch M, Zhu Q (2021) Diagnosing colorectal abnormalities using scattering coefficient maps acquired from optical coherence tomography. J Biophotonics 14(1):e202000276CrossRefPubMed Zeng Y, Chapman WC Jr, Lin Y, Li S, Mutch M, Zhu Q (2021) Diagnosing colorectal abnormalities using scattering coefficient maps acquired from optical coherence tomography. J Biophotonics 14(1):e202000276CrossRefPubMed
go back to reference Zeng Y, Xu S, Chapman WC Jr, Li S, Alipour Z, Abdelal H, Chatterjee D, Mutch M, Zhu Q (2020) Real-time colorectal cancer diagnosis using PR-OCT with deep learning. Theranostics 10(6):2587–2596CrossRefPubMedPubMedCentral Zeng Y, Xu S, Chapman WC Jr, Li S, Alipour Z, Abdelal H, Chatterjee D, Mutch M, Zhu Q (2020) Real-time colorectal cancer diagnosis using PR-OCT with deep learning. Theranostics 10(6):2587–2596CrossRefPubMedPubMedCentral
go back to reference Zhang G, Fu DJ, Liefers B, Faes L, Glinton S, Wagner S, Struyven R, Pontikos N, Keane PA, Balaskas K (2021) Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Lancet Digital Health 3(10):e665–e675CrossRefPubMed Zhang G, Fu DJ, Liefers B, Faes L, Glinton S, Wagner S, Struyven R, Pontikos N, Keane PA, Balaskas K (2021) Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. Lancet Digital Health 3(10):e665–e675CrossRefPubMed
go back to reference Zhou F, Wei HJ, Ye XP, Hu K, Wu GY, Yang HQ, He YH, Xie SS, Guo ZY (2015) Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Phys Med Biol 60(3):1385–1397CrossRefPubMed Zhou F, Wei HJ, Ye XP, Hu K, Wu GY, Yang HQ, He YH, Xie SS, Guo ZY (2015) Influence of nanoparticles accumulation on optical properties of human normal and cancerous liver tissue in vitro estimated by OCT. Phys Med Biol 60(3):1385–1397CrossRefPubMed
go back to reference Zhou J, Wang W, Lei B, Ge W, Huang Y, Zhang L, Yan Y, Zhou D, Ding Y, Wu J, Wang W (2020) Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study. Front Oncol 10:581210CrossRefPubMed Zhou J, Wang W, Lei B, Ge W, Huang Y, Zhang L, Yan Y, Zhou D, Ding Y, Wu J, Wang W (2020) Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study. Front Oncol 10:581210CrossRefPubMed
go back to reference Zhu Y, Gao W, Guo Z, Zhou Y, Zhou Y (2020) Liver tissue classification of en face images by fractal dimension-based support vector machine. J Biophotonics 13(4):e201960154CrossRefPubMed Zhu Y, Gao W, Guo Z, Zhou Y, Zhou Y (2020) Liver tissue classification of en face images by fractal dimension-based support vector machine. J Biophotonics 13(4):e201960154CrossRefPubMed
Metadata
Title
Optical coherence tomography and convolutional neural networks can differentiate colorectal liver metastases from liver parenchyma ex vivo
Authors
Iakovos Amygdalos
Enno Hachgenei
Luisa Burkl
David Vargas
Paul Goßmann
Laura I. Wolff
Mariia Druzenko
Maik Frye
Niels König
Robert H. Schmitt
Alexandros Chrysos
Katharina Jöchle
Tom F. Ulmer
Andreas Lambertz
Ruth Knüchel-Clarke
Ulf P. Neumann
Sven A. Lang
Publication date
12-08-2022
Publisher
Springer Berlin Heidelberg
Keyword
Metastasis
Published in
Journal of Cancer Research and Clinical Oncology / Issue 7/2023
Print ISSN: 0171-5216
Electronic ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-022-04263-z

Other articles of this Issue 7/2023

Journal of Cancer Research and Clinical Oncology 7/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine