Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2023

Open Access 01-12-2023 | Metastasis | Review

Methyltransferase-like proteins in cancer biology and potential therapeutic targeting

Authors: Ya-Nan Qi, Zhu Liu, Lian-Lian Hong, Pei Li, Zhi-Qiang Ling

Published in: Journal of Hematology & Oncology | Issue 1/2023

Login to get access

Abstract

RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Literature
1.
go back to reference Petrossian TC, Clarke SG. Uncovering the human methyltransferasome. Mol Cell Proteom MCP. 2011;10(1):M110.000976.PubMedCrossRef Petrossian TC, Clarke SG. Uncovering the human methyltransferasome. Mol Cell Proteom MCP. 2011;10(1):M110.000976.PubMedCrossRef
2.
go back to reference Leismann J, et al. The 18S ribosomal RNA m A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21(7):e49443.PubMedPubMedCentralCrossRef Leismann J, et al. The 18S ribosomal RNA m A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21(7):e49443.PubMedPubMedCentralCrossRef
3.
go back to reference Rong B, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Rep. 2020;33(12):108544.PubMedCrossRef Rong B, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Rep. 2020;33(12):108544.PubMedCrossRef
4.
go back to reference Bujnicki JM, et al. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 2002;55(4):431–44.PubMedCrossRef Bujnicki JM, et al. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 2002;55(4):431–44.PubMedCrossRef
5.
go back to reference Wang Z, et al. Induction of mA methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res CR. 2022;41(1):4.PubMedCrossRef Wang Z, et al. Induction of mA methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res CR. 2022;41(1):4.PubMedCrossRef
6.
go back to reference Song H, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022;21(1):43.PubMedPubMedCentralCrossRef Song H, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022;21(1):43.PubMedPubMedCentralCrossRef
8.
go back to reference Zhang J, et al. Methyltransferase-like protein 11A promotes migration of cervical cancer cells via up-regulating ELK3. Pharmacol Res. 2021;172:105814.PubMedCrossRef Zhang J, et al. Methyltransferase-like protein 11A promotes migration of cervical cancer cells via up-regulating ELK3. Pharmacol Res. 2021;172:105814.PubMedCrossRef
9.
go back to reference Mao XL, et al. Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucl Acids Res. 2021;49(14):8309–23.PubMedPubMedCentralCrossRef Mao XL, et al. Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucl Acids Res. 2021;49(14):8309–23.PubMedPubMedCentralCrossRef
10.
go back to reference Li S, et al. Structural basis for METTL6-mediated m3C RNA methylation. Biochem Biophys Res Commun. 2022;589:159–64.PubMedCrossRef Li S, et al. Structural basis for METTL6-mediated m3C RNA methylation. Biochem Biophys Res Commun. 2022;589:159–64.PubMedCrossRef
11.
go back to reference Van Haute L, et al. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Nucleic Acids Res. 2019;47(19):10267–81.PubMedPubMedCentralCrossRef Van Haute L, et al. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Nucleic Acids Res. 2019;47(19):10267–81.PubMedPubMedCentralCrossRef
13.
go back to reference Bahr A, et al. Molecular analysis of METTL1, a novel human methyltransferase-like gene with a high degree of phylogenetic conservation. Genomics. 1999;57(3):424–8.PubMedCrossRef Bahr A, et al. Molecular analysis of METTL1, a novel human methyltransferase-like gene with a high degree of phylogenetic conservation. Genomics. 1999;57(3):424–8.PubMedCrossRef
14.
go back to reference Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev. 2015;16:2.CrossRef Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev. 2015;16:2.CrossRef
16.
go back to reference Cheng W, et al. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncol. 2022;26:27–34.CrossRef Cheng W, et al. Novel roles of METTL1/WDR4 in tumor via m(7)G methylation. Mol Ther Oncol. 2022;26:27–34.CrossRef
17.
go back to reference Bokar JA, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233–47.PubMedPubMedCentral Bokar JA, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3(11):1233–47.PubMedPubMedCentral
18.
go back to reference Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.PubMedCrossRef Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–24.PubMedCrossRef
19.
20.
go back to reference Han J, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.PubMedPubMedCentralCrossRef Han J, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110.PubMedPubMedCentralCrossRef
21.
go back to reference Deng S, et al. RNA m(6)A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet. 2022;54(9):1427–37.PubMedCrossRef Deng S, et al. RNA m(6)A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet. 2022;54(9):1427–37.PubMedCrossRef
24.
go back to reference Wei X, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022;24(8):1278–90.PubMedCrossRef Wei X, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022;24(8):1278–90.PubMedCrossRef
25.
go back to reference Kudou K, et al. The requirement of Mettl3-promoted mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biol. 2017;7:9.CrossRef Kudou K, et al. The requirement of Mettl3-promoted mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biol. 2017;7:9.CrossRef
27.
go back to reference Luo Q, et al. Structural insights into molecular mechanism for N(6)-adenosine methylation by MT-A70 family methyltransferase METTL4. Nat Commun. 2022;13(1):5636.PubMedPubMedCentralCrossRef Luo Q, et al. Structural insights into molecular mechanism for N(6)-adenosine methylation by MT-A70 family methyltransferase METTL4. Nat Commun. 2022;13(1):5636.PubMedPubMedCentralCrossRef
29.
go back to reference Shen M, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021;47:102151.PubMedPubMedCentralCrossRef Shen M, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol. 2021;47:102151.PubMedPubMedCentralCrossRef
30.
go back to reference van den Homberg DAL, et al. N-6-Methyladenosine in vasoactive microRNAs during hypoxia; a novel role for METTL4. Int J Mol Sci. 2022;23:3. van den Homberg DAL, et al. N-6-Methyladenosine in vasoactive microRNAs during hypoxia; a novel role for METTL4. Int J Mol Sci. 2022;23:3.
32.
go back to reference Bonekamp NA, et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature. 2020;588(7839):712–6.PubMedCrossRef Bonekamp NA, et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature. 2020;588(7839):712–6.PubMedCrossRef
33.
go back to reference Hsu KW, et al. METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating multiple metastasis-inducing targets. Genome Biol. 2022;23(1):249.PubMedPubMedCentralCrossRef Hsu KW, et al. METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating multiple metastasis-inducing targets. Genome Biol. 2022;23(1):249.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Ignatova VV, et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34(9–10):715–29.PubMedPubMedCentralCrossRef Ignatova VV, et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34(9–10):715–29.PubMedPubMedCentralCrossRef
36.
go back to reference Wang L, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m(6)A) modification controls stem cell fate determination and neural function. Genes Dis. 2022;9(1):268–74.PubMedCrossRef Wang L, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m(6)A) modification controls stem cell fate determination and neural function. Genes Dis. 2022;9(1):268–74.PubMedCrossRef
37.
go back to reference Huang H, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes pancreatic cancer progression by modulating c-Myc translation. Int J Oncol. 2022;60:1.PubMed Huang H, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes pancreatic cancer progression by modulating c-Myc translation. Int J Oncol. 2022;60:1.PubMed
38.
go back to reference Brumele B, et al. Human TRMT112-methyltransferase network consists of seven partners interacting with a common co-factor. Int J Mol Sci. 2021;22(24):13593.PubMedPubMedCentralCrossRef Brumele B, et al. Human TRMT112-methyltransferase network consists of seven partners interacting with a common co-factor. Int J Mol Sci. 2021;22(24):13593.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Lou S, et al. Comprehensive characterization of RNA processing factors in gastric cancer identifies a prognostic signature for predicting clinical outcomes and therapeutic responses. Front Immunol. 2021;12:719628.PubMedPubMedCentralCrossRef Lou S, et al. Comprehensive characterization of RNA processing factors in gastric cancer identifies a prognostic signature for predicting clinical outcomes and therapeutic responses. Front Immunol. 2021;12:719628.PubMedPubMedCentralCrossRef
42.
go back to reference Bolatkan A, et al. Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules. Int J Oncol. 2022;60:1–13. Bolatkan A, et al. Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules. Int J Oncol. 2022;60:1–13.
44.
go back to reference Scholler E, et al. Balancing of mitochondrial translation through METTL8-mediated m(3)C modification of mitochondrial tRNAs. Mol Cell. 2021;81(23):4810–25.PubMedCrossRef Scholler E, et al. Balancing of mitochondrial translation through METTL8-mediated m(3)C modification of mitochondrial tRNAs. Mol Cell. 2021;81(23):4810–25.PubMedCrossRef
45.
46.
go back to reference Kowalinski E, Alfonzo JD. METTLing in the right place: METTL8 is a mitochondrial tRNA-specific methyltransferase. Mol Cell. 2021;81(23):4765–7.PubMedCrossRef Kowalinski E, Alfonzo JD. METTLing in the right place: METTL8 is a mitochondrial tRNA-specific methyltransferase. Mol Cell. 2021;81(23):4765–7.PubMedCrossRef
49.
go back to reference Gu H, et al. The STAT3 target Mettl8 regulates mouse ESC differentiation via inhibiting the JNK pathway. Stem Cell Rep. 2018;10(6):1807–20.CrossRef Gu H, et al. The STAT3 target Mettl8 regulates mouse ESC differentiation via inhibiting the JNK pathway. Stem Cell Rep. 2018;10(6):1807–20.CrossRef
50.
51.
go back to reference Wang X, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575–8.PubMedCrossRef Wang X, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575–8.PubMedCrossRef
53.
go back to reference Xu W, et al. Dynamic control of chromatin-associated mA methylation regulates nascent RNA synthesis. Mol Cell. 2022;82:6.CrossRef Xu W, et al. Dynamic control of chromatin-associated mA methylation regulates nascent RNA synthesis. Mol Cell. 2022;82:6.CrossRef
54.
go back to reference Meiser N, Mench N, Hengesbach M. RNA secondary structure dependence in METTL3-METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biol Chem. 2020;402(1):89–98.PubMedCrossRef Meiser N, Mench N, Hengesbach M. RNA secondary structure dependence in METTL3-METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biol Chem. 2020;402(1):89–98.PubMedCrossRef
55.
go back to reference Yoshida A, et al. Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucl Acids Res. 2022;50(1):449–57.PubMedCrossRef Yoshida A, et al. Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucl Acids Res. 2022;50(1):449–57.PubMedCrossRef
56.
go back to reference Liu P, et al. mA-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021;23(4):355–65.PubMedPubMedCentralCrossRef Liu P, et al. mA-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021;23(4):355–65.PubMedPubMedCentralCrossRef
59.
60.
61.
go back to reference Yoshinaga M, et al. The N(6)-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat Commun. 2022;13(1):6435.PubMedPubMedCentralCrossRef Yoshinaga M, et al. The N(6)-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat Commun. 2022;13(1):6435.PubMedPubMedCentralCrossRef
62.
63.
65.
go back to reference Malecki J, et al. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J Biol Chem. 2017;292(43):17950–62.PubMedPubMedCentralCrossRef Malecki J, et al. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J Biol Chem. 2017;292(43):17950–62.PubMedPubMedCentralCrossRef
66.
go back to reference Chen H, et al. The human mitochondrial 12S rRNA m(4)C methyltransferase METTL15 is required for mitochondrial function. J Biol Chem. 2020;295(25):8505–13.PubMedPubMedCentralCrossRef Chen H, et al. The human mitochondrial 12S rRNA m(4)C methyltransferase METTL15 is required for mitochondrial function. J Biol Chem. 2020;295(25):8505–13.PubMedPubMedCentralCrossRef
67.
go back to reference Shi Z, et al. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J. 2019;33(11):13040–50.PubMedCrossRef Shi Z, et al. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J. 2019;33(11):13040–50.PubMedCrossRef
68.
go back to reference Malecki JM, et al. Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. Nucl Acids Res. 2021;49(6):3185–203.PubMedPubMedCentralCrossRef Malecki JM, et al. Human METTL18 is a histidine-specific methyltransferase that targets RPL3 and affects ribosome biogenesis and function. Nucl Acids Res. 2021;49(6):3185–203.PubMedPubMedCentralCrossRef
70.
go back to reference Matsuura-Suzuki E, et al. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. Elife. 2022;11:72780.CrossRef Matsuura-Suzuki E, et al. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. Elife. 2022;11:72780.CrossRef
71.
go back to reference Malecki J, et al. Human METTL20 is a mitochondrial lysine methyltransferase that targets the beta subunit of electron transfer flavoprotein (ETFbeta) and modulates its activity. J Biol Chem. 2015;290(1):423–34.PubMedCrossRef Malecki J, et al. Human METTL20 is a mitochondrial lysine methyltransferase that targets the beta subunit of electron transfer flavoprotein (ETFbeta) and modulates its activity. J Biol Chem. 2015;290(1):423–34.PubMedCrossRef
72.
go back to reference Malecki J, et al. The METTL20 homologue from agrobacterium tumefaciens Is a dual specificity protein-lysine methyltransferase that targets ribosomal protein L7/L12 and the beta subunit of electron transfer flavoprotein (ETFbeta). J Biol Chem. 2016;291(18):9581–95.PubMedPubMedCentralCrossRef Malecki J, et al. The METTL20 homologue from agrobacterium tumefaciens Is a dual specificity protein-lysine methyltransferase that targets ribosomal protein L7/L12 and the beta subunit of electron transfer flavoprotein (ETFbeta). J Biol Chem. 2016;291(18):9581–95.PubMedPubMedCentralCrossRef
73.
go back to reference Rhein VF, et al. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J Biol Chem. 2014;289(35):24640–51.PubMedPubMedCentralCrossRef Rhein VF, et al. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J Biol Chem. 2014;289(35):24640–51.PubMedPubMedCentralCrossRef
74.
75.
go back to reference Zeng X, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology, 2022. Zeng X, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology, 2022.
77.
go back to reference Chen J, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 2022;42(3):223–44.CrossRef Chen J, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 2022;42(3):223–44.CrossRef
78.
go back to reference Han H, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022;13(1):1478.PubMedPubMedCentralCrossRef Han H, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022;13(1):1478.PubMedPubMedCentralCrossRef
79.
go back to reference Han H, Zheng S, Lin S. N(7)-methylguanosine (m(7)G) tRNA modification: a novel autophagy modulator in cancer. Autophagy. 2022;2022:1–3. Han H, Zheng S, Lin S. N(7)-methylguanosine (m(7)G) tRNA modification: a novel autophagy modulator in cancer. Autophagy. 2022;2022:1–3.
80.
go back to reference Chen B, et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/beta-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022;41(15):2239–53.PubMedCrossRef Chen B, et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/beta-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022;41(15):2239–53.PubMedCrossRef
81.
go back to reference Zeng Z, et al. Identifying novel therapeutic targets in gastric cancer using genome-wide CRISPR-Cas9 screening. Oncogene. 2022;41(14):2069–78.PubMedCrossRef Zeng Z, et al. Identifying novel therapeutic targets in gastric cancer using genome-wide CRISPR-Cas9 screening. Oncogene. 2022;41(14):2069–78.PubMedCrossRef
83.
go back to reference Deng Y, et al. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020;11(1):306.PubMedPubMedCentralCrossRef Deng Y, et al. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020;11(1):306.PubMedPubMedCentralCrossRef
84.
go back to reference Zhang HM, et al. The m6A methyltransferase METTL3-mediated N6-methyladenosine modification of DEK mRNA to promote gastric cancer cell growth and metastasis. Int J Mol Sci. 2022;23:12. Zhang HM, et al. The m6A methyltransferase METTL3-mediated N6-methyladenosine modification of DEK mRNA to promote gastric cancer cell growth and metastasis. Int J Mol Sci. 2022;23:12.
85.
go back to reference Liu X, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022;13(5):483.PubMedPubMedCentralCrossRef Liu X, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022;13(5):483.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Liu Y, et al. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene. 2022;42(5):374.PubMedCrossRef Liu Y, et al. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene. 2022;42(5):374.PubMedCrossRef
88.
go back to reference Xu QC, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41(11):1622–33.PubMedPubMedCentralCrossRef Xu QC, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41(11):1622–33.PubMedPubMedCentralCrossRef
89.
go back to reference Che F, et al. METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m(6)A-dependent manner. Cell Biol Toxicol, 2022. Che F, et al. METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m(6)A-dependent manner. Cell Biol Toxicol, 2022.
90.
go back to reference Zhou X, et al. METTL3 contributes to osteosarcoma progression by increasing DANCR mRNA stability via m6A modification. Front Cell Dev Biol. 2021;9:784719.PubMedCrossRef Zhou X, et al. METTL3 contributes to osteosarcoma progression by increasing DANCR mRNA stability via m6A modification. Front Cell Dev Biol. 2021;9:784719.PubMedCrossRef
91.
go back to reference Jiang R, et al. METTL3 stabilizes HDAC5 mRNA in an m(6)A-dependent manner to facilitate malignant proliferation of osteosarcoma cells. Cell Death Discov. 2022;8(1):179.PubMedPubMedCentralCrossRef Jiang R, et al. METTL3 stabilizes HDAC5 mRNA in an m(6)A-dependent manner to facilitate malignant proliferation of osteosarcoma cells. Cell Death Discov. 2022;8(1):179.PubMedPubMedCentralCrossRef
92.
go back to reference Huang H, et al. Analysis and identification of m(6)A RNA methylation regulators in metastatic osteosarcoma. Mol Ther Nucl Acids. 2022;27:577–92.CrossRef Huang H, et al. Analysis and identification of m(6)A RNA methylation regulators in metastatic osteosarcoma. Mol Ther Nucl Acids. 2022;27:577–92.CrossRef
93.
go back to reference Du QY, et al. METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene. 2022;41(39):4420–32.PubMedCrossRef Du QY, et al. METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene. 2022;41(39):4420–32.PubMedCrossRef
94.
go back to reference Liu P, et al. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an m6A-dependent manner. Cancer Sci. 2022;114:837.CrossRef Liu P, et al. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an m6A-dependent manner. Cancer Sci. 2022;114:837.CrossRef
95.
go back to reference Haigh DB, et al. The METTL3 RNA methyltransferase regulates transcriptional networks in prostate cancer. Cancers. 2022;14:20.CrossRef Haigh DB, et al. The METTL3 RNA methyltransferase regulates transcriptional networks in prostate cancer. Cancers. 2022;14:20.CrossRef
96.
go back to reference Zhu D, et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J Transl Med. 2022;20(1):298.PubMedPubMedCentralCrossRef Zhu D, et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J Transl Med. 2022;20(1):298.PubMedPubMedCentralCrossRef
97.
go back to reference Ge F, et al. METTL3/m(6)A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Front Pharmacol. 2022;13:1002565.PubMedPubMedCentralCrossRef Ge F, et al. METTL3/m(6)A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Front Pharmacol. 2022;13:1002565.PubMedPubMedCentralCrossRef
98.
go back to reference Iaiza A, et al. METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clin Epigenet. 2021;13(1):173.CrossRef Iaiza A, et al. METTL3-dependent MALAT1 delocalization drives c-Myc induction in thymic epithelial tumors. Clin Epigenet. 2021;13(1):173.CrossRef
100.
go back to reference Chen HD, et al. METTL3-mediated N6-methyladenosine modification of DUSP5 mRNA promotes gallbladder-cancer progression. Cancer Gene Ther. 2022;29(7):1012–20.PubMedCrossRef Chen HD, et al. METTL3-mediated N6-methyladenosine modification of DUSP5 mRNA promotes gallbladder-cancer progression. Cancer Gene Ther. 2022;29(7):1012–20.PubMedCrossRef
101.
go back to reference Xu X, et al. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci. 2022;114:105.PubMedPubMedCentralCrossRef Xu X, et al. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci. 2022;114:105.PubMedPubMedCentralCrossRef
102.
go back to reference Jin D, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef Jin D, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12(1):135.PubMedPubMedCentralCrossRef
103.
go back to reference Liu S, et al. The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by beta-elemene. Cell Death Dis. 2020;11(11):969.PubMedPubMedCentralCrossRef Liu S, et al. The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by beta-elemene. Cell Death Dis. 2020;11(11):969.PubMedPubMedCentralCrossRef
105.
go back to reference Zhu Y, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022;13(4):358.PubMedPubMedCentralCrossRef Zhu Y, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022;13(4):358.PubMedPubMedCentralCrossRef
106.
go back to reference He J, et al. METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021;29(5):1821–37.PubMedPubMedCentralCrossRef He J, et al. METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021;29(5):1821–37.PubMedPubMedCentralCrossRef
107.
go back to reference Ruan P, et al. m(6)A mRNA methylation regulates the ERK/NF-kappaB/AKT signaling pathway through the PAPPA/IGFBP4 axis to promote proliferation and tumor formation in endometrial cancer. Cell Biol Toxicol, 2022. Ruan P, et al. m(6)A mRNA methylation regulates the ERK/NF-kappaB/AKT signaling pathway through the PAPPA/IGFBP4 axis to promote proliferation and tumor formation in endometrial cancer. Cell Biol Toxicol, 2022.
108.
go back to reference Wu Q, et al. Molecular mechanism of m(6)A methylation of circDLC1 mediated by RNA methyltransferase METTL3 in the malignant proliferation of glioma cells. Cell Death Discov. 2022;8(1):229.PubMedPubMedCentralCrossRef Wu Q, et al. Molecular mechanism of m(6)A methylation of circDLC1 mediated by RNA methyltransferase METTL3 in the malignant proliferation of glioma cells. Cell Death Discov. 2022;8(1):229.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Tassinari V, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22(1):51.PubMedPubMedCentralCrossRef Tassinari V, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22(1):51.PubMedPubMedCentralCrossRef
111.
go back to reference Chang YZ, et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kappaB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett. 2021;511:36–46.PubMedCrossRef Chang YZ, et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kappaB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett. 2021;511:36–46.PubMedCrossRef
112.
go back to reference Zhang M, et al. CPEB2 m6A methylation regulates blood-tumor barrier permeability by regulating splicing factor SRSF5 stability. Commun Biol. 2022;5(1):908.PubMedPubMedCentralCrossRef Zhang M, et al. CPEB2 m6A methylation regulates blood-tumor barrier permeability by regulating splicing factor SRSF5 stability. Commun Biol. 2022;5(1):908.PubMedPubMedCentralCrossRef
113.
go back to reference Jakobsson ME, et al. The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat Commun. 2018;9(1):3411.PubMedPubMedCentralCrossRef Jakobsson ME, et al. The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat Commun. 2018;9(1):3411.PubMedPubMedCentralCrossRef
114.
116.
go back to reference Li L, et al. HN1L-mediated transcriptional axis AP-2gamma/METTL13/TCF3-ZEB1 drives tumor growth and metastasis in hepatocellular carcinoma. Cell Death Differ. 2019;26(11):2268–83.PubMedPubMedCentralCrossRef Li L, et al. HN1L-mediated transcriptional axis AP-2gamma/METTL13/TCF3-ZEB1 drives tumor growth and metastasis in hepatocellular carcinoma. Cell Death Differ. 2019;26(11):2268–83.PubMedPubMedCentralCrossRef
117.
118.
go back to reference Liu Z, et al. METTL13 inhibits progression of clear cell renal cell carcinoma with repression on PI3K/AKT/mTOR/HIF-1alpha pathway and c-Myc expression. J Transl Med. 2021;19(1):209.PubMedPubMedCentralCrossRef Liu Z, et al. METTL13 inhibits progression of clear cell renal cell carcinoma with repression on PI3K/AKT/mTOR/HIF-1alpha pathway and c-Myc expression. J Transl Med. 2021;19(1):209.PubMedPubMedCentralCrossRef
119.
go back to reference Sun T, et al. LNC942 promoting METTL14-mediated mA methylation in breast cancer cell proliferation and progression. Oncogene. 2020;39(31):5358–72.PubMedCrossRef Sun T, et al. LNC942 promoting METTL14-mediated mA methylation in breast cancer cell proliferation and progression. Oncogene. 2020;39(31):5358–72.PubMedCrossRef
120.
go back to reference Peng F, et al. Oncogenic AURKA-enhanced N-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31(3):345–61.PubMedCrossRef Peng F, et al. Oncogenic AURKA-enhanced N-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31(3):345–61.PubMedCrossRef
121.
go back to reference Wang M, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19(1):130.PubMedPubMedCentralCrossRef Wang M, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19(1):130.PubMedPubMedCentralCrossRef
122.
123.
go back to reference Yang X, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19(1):46.PubMedPubMedCentralCrossRef Yang X, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 2020;19(1):46.PubMedPubMedCentralCrossRef
124.
go back to reference Chen X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19(1):106.PubMedPubMedCentralCrossRef Chen X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19(1):106.PubMedPubMedCentralCrossRef
125.
go back to reference Fan H-N, et al. METTL14-mediated mA modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21(1):51.PubMedPubMedCentralCrossRef Fan H-N, et al. METTL14-mediated mA modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21(1):51.PubMedPubMedCentralCrossRef
126.
127.
go back to reference Zeng X, et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. Nat Cancer. 2022;3(9):1088–104.PubMedCrossRef Zeng X, et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. Nat Cancer. 2022;3(9):1088–104.PubMedCrossRef
128.
go back to reference Perez-Pepe M, Alarcon CR. An RNA link for METTL16 and DNA repair in PDAC. Nat Cancer. 2022;3(9):1018–20.PubMedCrossRef Perez-Pepe M, Alarcon CR. An RNA link for METTL16 and DNA repair in PDAC. Nat Cancer. 2022;3(9):1018–20.PubMedCrossRef
129.
go back to reference Dai Y-Z, et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an mA-dependent manner. Cell Mol Biol Lett. 2022;27(1):41.PubMedPubMedCentralCrossRef Dai Y-Z, et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an mA-dependent manner. Cell Mol Biol Lett. 2022;27(1):41.PubMedPubMedCentralCrossRef
130.
go back to reference Li K, et al. Clinical and prognostic pan-cancer analysis of m6A RNA methylation regulators in four types of endocrine system tumors. Aging. 2020;12(23):23931–44.PubMedPubMedCentralCrossRef Li K, et al. Clinical and prognostic pan-cancer analysis of m6A RNA methylation regulators in four types of endocrine system tumors. Aging. 2020;12(23):23931–44.PubMedPubMedCentralCrossRef
132.
go back to reference Zhang C, et al. m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer. Bioengineered. 2021;12(1):3159–76.PubMedPubMedCentralCrossRef Zhang C, et al. m6A RNA methylation regulators were associated with the malignancy and prognosis of ovarian cancer. Bioengineered. 2021;12(1):3159–76.PubMedPubMedCentralCrossRef
133.
go back to reference Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdiscipl Rev RNA. 2022;13(2):e1681.CrossRef Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: targets and function. Wiley Interdiscipl Rev RNA. 2022;13(2):e1681.CrossRef
134.
go back to reference Warda AS, et al. Human METTL16 is a -methyladenosine (mA) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004–14.PubMedPubMedCentralCrossRef Warda AS, et al. Human METTL16 is a -methyladenosine (mA) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18(11):2004–14.PubMedPubMedCentralCrossRef
135.
go back to reference Brown JA, et al. Methyltransferase-like protein 16 binds the 3’-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 2016;113(49):14013–8.PubMedPubMedCentralCrossRef Brown JA, et al. Methyltransferase-like protein 16 binds the 3’-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 2016;113(49):14013–8.PubMedPubMedCentralCrossRef
136.
go back to reference Irie HY, et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 2005;171(6):1023–34.PubMedPubMedCentralCrossRef Irie HY, et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol. 2005;171(6):1023–34.PubMedPubMedCentralCrossRef
137.
139.
go back to reference Wang Q, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193–205.PubMedCrossRef Wang Q, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69(7):1193–205.PubMedCrossRef
140.
go back to reference Yang X, et al. Interactive regulation of DNA demethylase gene TET1 and m(6)A methyltransferase gene METTL3 in myoblast differentiation. Int J Biol Macromol. 2022;223(Pt A):916–30.PubMedCrossRef Yang X, et al. Interactive regulation of DNA demethylase gene TET1 and m(6)A methyltransferase gene METTL3 in myoblast differentiation. Int J Biol Macromol. 2022;223(Pt A):916–30.PubMedCrossRef
141.
142.
go back to reference Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis. J Exp Clin Cancer Res. 2021;40(1):62.PubMedPubMedCentralCrossRef Song C, Zhou C. HOXA10 mediates epithelial-mesenchymal transition to promote gastric cancer metastasis partly via modulation of TGFB2/Smad/METTL3 signaling axis. J Exp Clin Cancer Res. 2021;40(1):62.PubMedPubMedCentralCrossRef
143.
go back to reference Li M, et al. HDAC1/3-dependent moderate liquid-liquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death Dis. 2022;13(11):992.PubMedPubMedCentralCrossRef Li M, et al. HDAC1/3-dependent moderate liquid-liquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death Dis. 2022;13(11):992.PubMedPubMedCentralCrossRef
144.
145.
go back to reference Li Y, et al. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 Axis. Int J Mol Sci. 2022;23:17. Li Y, et al. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 Axis. Int J Mol Sci. 2022;23:17.
146.
go back to reference Liu H, et al. Fine particulate matter induces METTL3-mediated m(6)A modification of BIRC5 mRNA in bladder cancer. J Hazard Mater. 2022;437:129310.PubMedCrossRef Liu H, et al. Fine particulate matter induces METTL3-mediated m(6)A modification of BIRC5 mRNA in bladder cancer. J Hazard Mater. 2022;437:129310.PubMedCrossRef
147.
go back to reference Ni Z, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789–802.PubMedCrossRef Ni Z, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022;82(9):1789–802.PubMedCrossRef
148.
go back to reference Xu H, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10(13):5671–86.PubMedPubMedCentralCrossRef Xu H, et al. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics. 2020;10(13):5671–86.PubMedPubMedCentralCrossRef
149.
150.
go back to reference Wang A, et al. Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med. 2022;20(1):288.PubMedPubMedCentralCrossRef Wang A, et al. Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med. 2022;20(1):288.PubMedPubMedCentralCrossRef
151.
go back to reference Chen S, et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat Commun. 2022;13(1):1248.PubMedPubMedCentralCrossRef Chen S, et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat Commun. 2022;13(1):1248.PubMedPubMedCentralCrossRef
152.
go back to reference Weng H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA mA modification. Cell Stem Cell. 2018;22(2):191.PubMedCrossRef Weng H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA mA modification. Cell Stem Cell. 2018;22(2):191.PubMedCrossRef
153.
go back to reference Zhang C, et al. mA methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer. Front Oncol. 2021;11:696371.PubMedPubMedCentralCrossRef Zhang C, et al. mA methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer. Front Oncol. 2021;11:696371.PubMedPubMedCentralCrossRef
154.
go back to reference Feng Y, et al. METTL3/METTL14 transactivation and mA-dependent TGF-β1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12(3):839–56.PubMedPubMedCentralCrossRef Feng Y, et al. METTL3/METTL14 transactivation and mA-dependent TGF-β1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12(3):839–56.PubMedPubMedCentralCrossRef
155.
go back to reference Wang H, et al. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis. 2021;13(1):3.PubMedPubMedCentralCrossRef Wang H, et al. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis. 2021;13(1):3.PubMedPubMedCentralCrossRef
156.
go back to reference Peng F, et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31(3):345–61.PubMedCrossRef Peng F, et al. Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021;31(3):345–61.PubMedCrossRef
157.
go back to reference Chen S, et al. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol. 2021;14(1):60.PubMedPubMedCentralCrossRef Chen S, et al. CLK1/SRSF5 pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and promotes growth and metastasis of pancreatic cancer. J Hematol Oncol. 2021;14(1):60.PubMedPubMedCentralCrossRef
158.
159.
160.
161.
go back to reference Zhao C, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating mA modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef Zhao C, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating mA modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef
162.
go back to reference Shen W, et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA mA modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–63.PubMedPubMedCentralCrossRef Shen W, et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA mA modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–63.PubMedPubMedCentralCrossRef
163.
164.
go back to reference Wang Z, et al. m A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J. 2021;40(5):e106309.PubMedPubMedCentralCrossRef Wang Z, et al. m A deposition is regulated by PRMT1-mediated arginine methylation of METTL14 in its disordered C-terminal region. EMBO J. 2021;40(5):e106309.PubMedPubMedCentralCrossRef
165.
go back to reference Liao J, et al. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2022;118:e2025948118. Liao J, et al. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2022;118:e2025948118.
166.
go back to reference Zhu S, et al. Targeting N(7)-methylguanosine tRNA modification blocks hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Mol Ther. 2022;21:1596. Zhu S, et al. Targeting N(7)-methylguanosine tRNA modification blocks hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Mol Ther. 2022;21:1596.
167.
go back to reference Dai Z, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339–55.PubMedCrossRef Dai Z, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339–55.PubMedCrossRef
168.
go back to reference Ma J, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422–35.PubMedPubMedCentralCrossRef Ma J, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422–35.PubMedPubMedCentralCrossRef
169.
go back to reference Yue B, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18(1):142.PubMedPubMedCentralCrossRef Yue B, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18(1):142.PubMedPubMedCentralCrossRef
170.
go back to reference Huo FC, et al. METTL3-mediated m(6)A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene. 2021;40(16):2968–81.PubMedCrossRef Huo FC, et al. METTL3-mediated m(6)A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene. 2021;40(16):2968–81.PubMedCrossRef
171.
go back to reference Liu HT, et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ. 2022;29(3):627–41.PubMedCrossRef Liu HT, et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus. Cell Death Differ. 2022;29(3):627–41.PubMedCrossRef
172.
go back to reference Gao Z, et al. LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer. Carcinogenesis. 2022;43(5):419–29.PubMedCrossRef Gao Z, et al. LncRNA LINC02253 activates KRT18/MAPK/ERK pathway by mediating N6-methyladenosine modification of KRT18 mRNA in gastric cancer. Carcinogenesis. 2022;43(5):419–29.PubMedCrossRef
173.
174.
go back to reference Shi K, et al. RNA methylation-mediated LINC01559 suppresses colorectal cancer progression by regulating the miR-106b-5p/PTEN axis. Int J Biol Sci. 2022;18(7):3048–65.PubMedPubMedCentralCrossRef Shi K, et al. RNA methylation-mediated LINC01559 suppresses colorectal cancer progression by regulating the miR-106b-5p/PTEN axis. Int J Biol Sci. 2022;18(7):3048–65.PubMedPubMedCentralCrossRef
175.
go back to reference Huang L, et al., METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. J Cancer Res Clin Oncol, 2022. Huang L, et al., METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. J Cancer Res Clin Oncol, 2022.
176.
go back to reference Xu Q, et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 2022;113(11):3787–800.PubMedPubMedCentralCrossRef Xu Q, et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 2022;113(11):3787–800.PubMedPubMedCentralCrossRef
177.
go back to reference Chen M, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.PubMedCrossRef Chen M, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70.PubMedCrossRef
178.
go back to reference Qiao K, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis. 2021;24(1):83–96.PubMedCrossRef Qiao K, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis. 2021;24(1):83–96.PubMedCrossRef
179.
go back to reference Zhang L, et al. Resina Draconis extract exerts anti-HCC effects through METTL3-m6A-Survivin axis. Phytother Res. 2022;36(6):2542–57.PubMedCrossRef Zhang L, et al. Resina Draconis extract exerts anti-HCC effects through METTL3-m6A-Survivin axis. Phytother Res. 2022;36(6):2542–57.PubMedCrossRef
180.
go back to reference Ji Y, et al. N6-methyladenosine modification of CIRCKRT17 initiated by METTL3 promotes osimertinib resistance of lung adenocarcinoma by EIF4A3 to enhance YAP1 stability. Cancers. 2022;14:22.CrossRef Ji Y, et al. N6-methyladenosine modification of CIRCKRT17 initiated by METTL3 promotes osimertinib resistance of lung adenocarcinoma by EIF4A3 to enhance YAP1 stability. Cancers. 2022;14:22.CrossRef
181.
go back to reference Jin M, et al. Cigarette smoking induces aberrant N(6)-methyladenosine of DAPK2 to promote non-small cell lung cancer progression by activating NF-kappaB pathway. Cancer Lett. 2021;518:214–29.PubMedCrossRef Jin M, et al. Cigarette smoking induces aberrant N(6)-methyladenosine of DAPK2 to promote non-small cell lung cancer progression by activating NF-kappaB pathway. Cancer Lett. 2021;518:214–29.PubMedCrossRef
182.
183.
go back to reference Li J, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19(1):152.PubMedPubMedCentralCrossRef Li J, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19(1):152.PubMedPubMedCentralCrossRef
184.
go back to reference Zheng Y, et al. LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 2022;30:209.PubMedPubMedCentralCrossRef Zheng Y, et al. LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 2022;30:209.PubMedPubMedCentralCrossRef
185.
186.
go back to reference Chen F, et al. N(6) -methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Cancer Res. 2021;81(11):2847–60.PubMedCrossRef Chen F, et al. N(6) -methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Cancer Res. 2021;81(11):2847–60.PubMedCrossRef
187.
go back to reference Xu LM, et al. MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene. 2022;41(12):1742–51.PubMedCrossRef Xu LM, et al. MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene. 2022;41(12):1742–51.PubMedCrossRef
188.
go back to reference Lin S, et al. METTL3-induced miR-222-3p upregulation inhibits STK4 and promotes the malignant behaviors of thyroid carcinoma cells. J Clin Endocrinol Metab. 2022;107(2):474–90.PubMedCrossRef Lin S, et al. METTL3-induced miR-222-3p upregulation inhibits STK4 and promotes the malignant behaviors of thyroid carcinoma cells. J Clin Endocrinol Metab. 2022;107(2):474–90.PubMedCrossRef
189.
go back to reference Chai RC, et al. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m(6)A modification to activate NF-kappaB and promote the malignant progression of glioma. J Hematol Oncol. 2021;14(1):109.PubMedPubMedCentralCrossRef Chai RC, et al. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m(6)A modification to activate NF-kappaB and promote the malignant progression of glioma. J Hematol Oncol. 2021;14(1):109.PubMedPubMedCentralCrossRef
190.
go back to reference Zhang ZW, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41(4):111530.PubMedCrossRef Zhang ZW, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41(4):111530.PubMedCrossRef
191.
192.
go back to reference Hu Y, et al. METTL3 regulates the malignancy of cervical cancer via post-transcriptional regulation of RAB2B. Eur J Pharmacol. 2020;879:173134.PubMedCrossRef Hu Y, et al. METTL3 regulates the malignancy of cervical cancer via post-transcriptional regulation of RAB2B. Eur J Pharmacol. 2020;879:173134.PubMedCrossRef
193.
go back to reference Ji F, et al. m(6)A methyltransferase METTL3-mediated lncRNA FOXD2-AS1 promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics. 2021;22:574–81.PubMedPubMedCentralCrossRef Ji F, et al. m(6)A methyltransferase METTL3-mediated lncRNA FOXD2-AS1 promotes the tumorigenesis of cervical cancer. Mol Ther Oncolytics. 2021;22:574–81.PubMedPubMedCentralCrossRef
194.
go back to reference Bi X, et al. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021;28(3–4):335–49.PubMedCrossRef Bi X, et al. METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther. 2021;28(3–4):335–49.PubMedCrossRef
195.
go back to reference Bi X, et al. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discov. 2021;7(1):237.PubMedPubMedCentralCrossRef Bi X, et al. METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discov. 2021;7(1):237.PubMedPubMedCentralCrossRef
196.
go back to reference Xu Y, et al. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int. 2022;22(1):11.PubMedPubMedCentralCrossRef Xu Y, et al. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int. 2022;22(1):11.PubMedPubMedCentralCrossRef
197.
go back to reference Li A, et al. ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3. Clin Transl Med. 2022;12(6):e906.PubMedPubMedCentralCrossRef Li A, et al. ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3. Clin Transl Med. 2022;12(6):e906.PubMedPubMedCentralCrossRef
198.
199.
go back to reference Wang S, et al. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N -methyladenosine methylation through methyltransferase-like 14. Cancer Sci. 2021;112(8):3243–54.PubMedPubMedCentralCrossRef Wang S, et al. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N -methyladenosine methylation through methyltransferase-like 14. Cancer Sci. 2021;112(8):3243–54.PubMedPubMedCentralCrossRef
200.
go back to reference Zhang L, Luo X, Qiao S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022;127(1):30–42.PubMedPubMedCentralCrossRef Zhang L, Luo X, Qiao S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022;127(1):30–42.PubMedPubMedCentralCrossRef
201.
go back to reference Liu Z, et al. METTL14-mediated N-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun Signal. 2022;20(1):36.PubMedPubMedCentralCrossRef Liu Z, et al. METTL14-mediated N-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun Signal. 2022;20(1):36.PubMedPubMedCentralCrossRef
202.
go back to reference Huang J, et al. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet. 2022;18(10):e1010366.PubMedPubMedCentralCrossRef Huang J, et al. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet. 2022;18(10):e1010366.PubMedPubMedCentralCrossRef
203.
go back to reference Guimarães-Teixeira C, et al. Downregulation of m A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol Oncol. 2022;16(9):1841–56.PubMedPubMedCentralCrossRef Guimarães-Teixeira C, et al. Downregulation of m A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol Oncol. 2022;16(9):1841–56.PubMedPubMedCentralCrossRef
204.
go back to reference Fan HN, et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21(1):51.PubMedPubMedCentralCrossRef Fan HN, et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21(1):51.PubMedPubMedCentralCrossRef
205.
go back to reference Liu Z, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11(9):e545.PubMedPubMedCentralCrossRef Liu Z, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11(9):e545.PubMedPubMedCentralCrossRef
206.
go back to reference Zhao C, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m(6)A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef Zhao C, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m(6)A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29(7):1043–55.PubMedCrossRef
207.
go back to reference Zhang X, et al. METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death Dis. 2021;12(6):617.PubMedPubMedCentralCrossRef Zhang X, et al. METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death Dis. 2021;12(6):617.PubMedPubMedCentralCrossRef
208.
go back to reference Wang M, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19(1):130.PubMedPubMedCentralCrossRef Wang M, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19(1):130.PubMedPubMedCentralCrossRef
209.
210.
go back to reference Zhou T, et al. m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct Target Ther. 2020;5(1):296.PubMedPubMedCentralCrossRef Zhou T, et al. m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct Target Ther. 2020;5(1):296.PubMedPubMedCentralCrossRef
211.
go back to reference Lin J-X, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 2022;13(5):463.PubMedPubMedCentralCrossRef Lin J-X, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 2022;13(5):463.PubMedPubMedCentralCrossRef
212.
go back to reference Li K, et al. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene. 2022;41(23):3197–209.PubMedCrossRef Li K, et al. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene. 2022;41(23):3197–209.PubMedCrossRef
214.
go back to reference Ban Y, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 2020;14(6):1282–96.PubMedPubMedCentralCrossRef Ban Y, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 2020;14(6):1282–96.PubMedPubMedCentralCrossRef
215.
go back to reference Yang Y, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef Yang Y, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef
216.
go back to reference Peng Z, et al. METTL3-m(6)A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther. 2022;30(2):932–46.PubMedCrossRef Peng Z, et al. METTL3-m(6)A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther. 2022;30(2):932–46.PubMedCrossRef
217.
218.
219.
go back to reference Chen H, et al. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and Is a therapeutic target. Gastroenterology. 2021;160(4):1284–300.PubMedCrossRef Chen H, et al. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and Is a therapeutic target. Gastroenterology. 2021;160(4):1284–300.PubMedCrossRef
220.
go back to reference Yang Z, et al. Knockdown of RNA N6-methyladenosine methyltransferase METTL3 represses Warburg effect in colorectal cancer via regulating HIF-1alpha. Signal Transduct Target Ther. 2021;6(1):89.PubMedPubMedCentralCrossRef Yang Z, et al. Knockdown of RNA N6-methyladenosine methyltransferase METTL3 represses Warburg effect in colorectal cancer via regulating HIF-1alpha. Signal Transduct Target Ther. 2021;6(1):89.PubMedPubMedCentralCrossRef
221.
go back to reference Zhang K, et al. N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 2022;12(10):4802–17.PubMedPubMedCentralCrossRef Zhang K, et al. N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 2022;12(10):4802–17.PubMedPubMedCentralCrossRef
222.
go back to reference Shen W, et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m(6)A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–63.PubMedPubMedCentralCrossRef Shen W, et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m(6)A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–63.PubMedPubMedCentralCrossRef
223.
go back to reference Ma L, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41(1):36.PubMedPubMedCentralCrossRef Ma L, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41(1):36.PubMedPubMedCentralCrossRef
224.
go back to reference Cai W, et al. METTL3-dependent glycolysis regulates dental pulp stem cell differentiation. J Dent Res. 2022;101(5):580–9.PubMedCrossRef Cai W, et al. METTL3-dependent glycolysis regulates dental pulp stem cell differentiation. J Dent Res. 2022;101(5):580–9.PubMedCrossRef
225.
go back to reference Xi C, et al. Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Rep. 2022;17(8):1799–809.CrossRef Xi C, et al. Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Rep. 2022;17(8):1799–809.CrossRef
226.
go back to reference Liu P, et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021;23(4):355–65.PubMedPubMedCentralCrossRef Liu P, et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021;23(4):355–65.PubMedPubMedCentralCrossRef
227.
go back to reference Feng Y, et al. METTL3/METTL14 transactivation and m(6)A-dependent TGF-beta1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12(3):839–56.PubMedPubMedCentralCrossRef Feng Y, et al. METTL3/METTL14 transactivation and m(6)A-dependent TGF-beta1 translation in activated kupffer cells. Cell Mol Gastroenterol Hepatol. 2021;12(3):839–56.PubMedPubMedCentralCrossRef
228.
go back to reference Yang Y, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther J Am Soc Gene Ther. 2022;30(6):2342–53.CrossRef Yang Y, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther J Am Soc Gene Ther. 2022;30(6):2342–53.CrossRef
229.
go back to reference Liu P, et al. mA-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 2022;12(14):6291–307.PubMedPubMedCentralCrossRef Liu P, et al. mA-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 2022;12(14):6291–307.PubMedPubMedCentralCrossRef
230.
go back to reference Zhang C, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11(8):3676–93.PubMedPubMedCentralCrossRef Zhang C, et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carcinoma. Theranostics. 2021;11(8):3676–93.PubMedPubMedCentralCrossRef
231.
go back to reference Du L, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Can Res. 2021;81(14):3822–34.CrossRef Du L, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Can Res. 2021;81(14):3822–34.CrossRef
232.
go back to reference Liu H, et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2022;72:1555.PubMedCrossRef Liu H, et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2022;72:1555.PubMedCrossRef
233.
go back to reference Liu Z, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20(1):105.PubMedPubMedCentralCrossRef Liu Z, et al. N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20(1):105.PubMedPubMedCentralCrossRef
234.
go back to reference Zhu D, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28(6):1773–89.PubMedCrossRef Zhu D, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28(6):1773–89.PubMedCrossRef
235.
go back to reference Wan W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21(1):60.PubMedPubMedCentralCrossRef Wan W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21(1):60.PubMedPubMedCentralCrossRef
237.
go back to reference Ji H, et al. Comprehensive characterization of tumor microenvironment and m6A RNA methylation regulators and its effects on PD-L1 and immune infiltrates in cervical cancer. Front Immunol. 2022;13:976107.PubMedPubMedCentralCrossRef Ji H, et al. Comprehensive characterization of tumor microenvironment and m6A RNA methylation regulators and its effects on PD-L1 and immune infiltrates in cervical cancer. Front Immunol. 2022;13:976107.PubMedPubMedCentralCrossRef
238.
go back to reference Chen H, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163(4):891–907.PubMedCrossRef Chen H, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163(4):891–907.PubMedCrossRef
239.
go back to reference Yu R, et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 2022;18(9):3874–87.PubMedPubMedCentralCrossRef Yu R, et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 2022;18(9):3874–87.PubMedPubMedCentralCrossRef
240.
go back to reference Xiong J, Wang H, Wang Q. Suppressive myeloid cells shape the tumor immune microenvironment. Adv Biol. 2021;5(3):e1900311.CrossRef Xiong J, Wang H, Wang Q. Suppressive myeloid cells shape the tumor immune microenvironment. Adv Biol. 2021;5(3):e1900311.CrossRef
241.
go back to reference Jia G, et al. LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol. 2022;107:108586.PubMedCrossRef Jia G, et al. LXA4 enhances prostate cancer progression by facilitating M2 macrophage polarization via inhibition of METTL3. Int Immunopharmacol. 2022;107:108586.PubMedCrossRef
242.
go back to reference Xiong J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82(9):1660–77.PubMedCrossRef Xiong J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82(9):1660–77.PubMedCrossRef
243.
go back to reference Xue R, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141–7.PubMedCrossRef Xue R, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141–7.PubMedCrossRef
244.
245.
go back to reference Dong L, et al. The loss of RNA N-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8 T cell dysfunction and tumor growth. Cancer Cell. 2021;39:7.CrossRef Dong L, et al. The loss of RNA N-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8 T cell dysfunction and tumor growth. Cancer Cell. 2021;39:7.CrossRef
246.
go back to reference Huang X, et al. Macrophage membrane-coated nanovesicles for dual-targeted drug delivery to inhibit tumor and induce macrophage polarization. Bioactive Materials. 2023;23:69–79.PubMedCrossRef Huang X, et al. Macrophage membrane-coated nanovesicles for dual-targeted drug delivery to inhibit tumor and induce macrophage polarization. Bioactive Materials. 2023;23:69–79.PubMedCrossRef
248.
go back to reference Cai C, et al. M6A “writer” gene : a favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front Oncol. 2021;11:615296.PubMedPubMedCentralCrossRef Cai C, et al. M6A “writer” gene : a favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer. Front Oncol. 2021;11:615296.PubMedPubMedCentralCrossRef
249.
go back to reference Zheng H, et al. Decreased expression of programmed death Ligand-L1 by seven in absentia homolog 2 in cholangiocarcinoma enhances T-cell-mediated antitumor activity. Front Immunol. 2022;13:845193.PubMedPubMedCentralCrossRef Zheng H, et al. Decreased expression of programmed death Ligand-L1 by seven in absentia homolog 2 in cholangiocarcinoma enhances T-cell-mediated antitumor activity. Front Immunol. 2022;13:845193.PubMedPubMedCentralCrossRef
250.
go back to reference Huang, M., et al., METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Research, 2022. Huang, M., et al., METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Research, 2022.
251.
252.
go back to reference Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef Xie H, et al. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71.PubMedPubMedCentralCrossRef
253.
go back to reference Zhang H, et al. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis. 2022;13(7):657.PubMedPubMedCentralCrossRef Zhang H, et al. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis. 2022;13(7):657.PubMedPubMedCentralCrossRef
254.
go back to reference Li, E., et al., METTL3 promotes homologous recombination repair and modulates chemotherapeutic response in breast cancer by regulating the EGF/RAD51 axis. Elife, 2022. 11. Li, E., et al., METTL3 promotes homologous recombination repair and modulates chemotherapeutic response in breast cancer by regulating the EGF/RAD51 axis. Elife, 2022. 11.
255.
go back to reference Liu X, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m(6)A-based epitranscriptomic mechanism. Mol Ther. 2020;28(12):2593–604.PubMedPubMedCentralCrossRef Liu X, et al. Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m(6)A-based epitranscriptomic mechanism. Mol Ther. 2020;28(12):2593–604.PubMedPubMedCentralCrossRef
256.
go back to reference Bhattarai PY, et al. METTL3 induces PLX4032 resistance in melanoma by promoting m(6)A-dependent EGFR translation. Cancer Lett. 2021;522:44–56.PubMedCrossRef Bhattarai PY, et al. METTL3 induces PLX4032 resistance in melanoma by promoting m(6)A-dependent EGFR translation. Cancer Lett. 2021;522:44–56.PubMedCrossRef
257.
go back to reference Li H, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 2022;79(3):135.PubMedCrossRef Li H, et al. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 2022;79(3):135.PubMedCrossRef
258.
go back to reference Wang Q, et al. APAF1-binding long noncoding RNA promotes tumor growth and multidrug resistance in gastric cancer by blocking apoptosome assembly. Adv Sci. 2022;9(28):e2201889.CrossRef Wang Q, et al. APAF1-binding long noncoding RNA promotes tumor growth and multidrug resistance in gastric cancer by blocking apoptosome assembly. Adv Sci. 2022;9(28):e2201889.CrossRef
260.
go back to reference Li M, et al. METTL3 antagonizes 5-FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol. 2022;61(3):1–13.CrossRef Li M, et al. METTL3 antagonizes 5-FU chemotherapy and confers drug resistance in colorectal carcinoma. Int J Oncol. 2022;61(3):1–13.CrossRef
261.
go back to reference Zhang Y, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett. 2023;553:215971.PubMedCrossRef Zhang Y, et al. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett. 2023;553:215971.PubMedCrossRef
262.
263.
go back to reference Jun F, et al. Quantitative proteomic analysis identifies novel regulators of methotrexate resistance in choriocarcinoma. Gynecol Oncol. 2020;157(1):268–79.PubMedCrossRef Jun F, et al. Quantitative proteomic analysis identifies novel regulators of methotrexate resistance in choriocarcinoma. Gynecol Oncol. 2020;157(1):268–79.PubMedCrossRef
264.
265.
266.
go back to reference McKinnon CM, Mellor H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer. 2017;17(1):145.PubMedPubMedCentralCrossRef McKinnon CM, Mellor H. The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer. 2017;17(1):145.PubMedPubMedCentralCrossRef
267.
go back to reference Chen Y, et al. N-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022;21(1):111.PubMedPubMedCentralCrossRef Chen Y, et al. N-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022;21(1):111.PubMedPubMedCentralCrossRef
268.
go back to reference Li H-B, et al. METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine. 2022;82:104142.PubMedPubMedCentralCrossRef Li H-B, et al. METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine. 2022;82:104142.PubMedPubMedCentralCrossRef
269.
go back to reference Kong F, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol. 2020;122:105731.PubMedCrossRef Kong F, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol. 2020;122:105731.PubMedCrossRef
270.
go back to reference Gong S, Wang S, Shao M. Mechanism of METTL14-mediated mA modification in non-small cell lung cancer cell resistance to cisplatin. J Mol Med. 2022;100(12):1771–85.PubMedCrossRef Gong S, Wang S, Shao M. Mechanism of METTL14-mediated mA modification in non-small cell lung cancer cell resistance to cisplatin. J Mol Med. 2022;100(12):1771–85.PubMedCrossRef
271.
go back to reference Su R, et al. R-2HG exhibits anti-tumor activity by targeting FTO/mA/MYC/CEBPA signaling. Cell. 2018;172:1–2.CrossRef Su R, et al. R-2HG exhibits anti-tumor activity by targeting FTO/mA/MYC/CEBPA signaling. Cell. 2018;172:1–2.CrossRef
272.
go back to reference Huang H, Weng H, Chen J. mA modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef Huang H, Weng H, Chen J. mA modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270–88.PubMedPubMedCentralCrossRef
273.
go back to reference Li Q, et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 2017;118(9):2587–98.PubMedPubMedCentralCrossRef Li Q, et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 2017;118(9):2587–98.PubMedPubMedCentralCrossRef
274.
go back to reference Luo M, et al. PHLDB2 mediates cetuximab resistance via interacting with EGFR in latent metastasis of colorectal cancer. Cell Mol Gastroenterol Hepatol. 2022;13(4):1223–42.PubMedCrossRef Luo M, et al. PHLDB2 mediates cetuximab resistance via interacting with EGFR in latent metastasis of colorectal cancer. Cell Mol Gastroenterol Hepatol. 2022;13(4):1223–42.PubMedCrossRef
275.
go back to reference Tao M, et al. Decreased RNA mA methylation enhances the process of the epithelial mesenchymal transition and vasculogenic mimicry in glioblastoma. Am J Cancer Res. 2022;12(2):893–906.PubMedPubMedCentral Tao M, et al. Decreased RNA mA methylation enhances the process of the epithelial mesenchymal transition and vasculogenic mimicry in glioblastoma. Am J Cancer Res. 2022;12(2):893–906.PubMedPubMedCentral
276.
go back to reference Zhang Z, et al. m(6)A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J Hematol Oncol. 2021;14(1):190.PubMedPubMedCentralCrossRef Zhang Z, et al. m(6)A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J Hematol Oncol. 2021;14(1):190.PubMedPubMedCentralCrossRef
277.
go back to reference Zhang Z, et al. m(6)A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med. 2021;19(1):284.PubMedPubMedCentralCrossRef Zhang Z, et al. m(6)A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med. 2021;19(1):284.PubMedPubMedCentralCrossRef
278.
go back to reference Xu JR, et al. Establishment and validation of prognosis predictive model using mA RNA methylation regulators in children acute myeloid leukemia. Zhonghua Yu Fang Yi Xue Za Zhi. 2021;55(8):983–9.PubMed Xu JR, et al. Establishment and validation of prognosis predictive model using mA RNA methylation regulators in children acute myeloid leukemia. Zhonghua Yu Fang Yi Xue Za Zhi. 2021;55(8):983–9.PubMed
279.
280.
go back to reference Liu Q, et al. Molecular characterization and clinical relevance of N-methyladenosine regulators in metastatic prostate cancer. Front Oncol. 2022;12:914692.PubMedPubMedCentralCrossRef Liu Q, et al. Molecular characterization and clinical relevance of N-methyladenosine regulators in metastatic prostate cancer. Front Oncol. 2022;12:914692.PubMedPubMedCentralCrossRef
281.
282.
285.
go back to reference Bedi RK, et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem. 2020;15(9):744–8.PubMedCrossRef Bedi RK, et al. Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem. 2020;15(9):744–8.PubMedCrossRef
286.
go back to reference Lee J-H, et al. Discovery of substituted indole derivatives as allosteric inhibitors of m A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res. 2022;83(3):783–99.PubMed Lee J-H, et al. Discovery of substituted indole derivatives as allosteric inhibitors of m A-RNA methyltransferase, METTL3-14 complex. Drug Dev Res. 2022;83(3):783–99.PubMed
288.
go back to reference Lee JH, et al. Eltrombopag as an allosteric inhibitor of the METTL3–14 complex affecting the m(6)A methylation of RNA in Acute Myeloid Leukemia cells. Pharmaceuticals. 2022;15(4):440.PubMedPubMedCentralCrossRef Lee JH, et al. Eltrombopag as an allosteric inhibitor of the METTL3–14 complex affecting the m(6)A methylation of RNA in Acute Myeloid Leukemia cells. Pharmaceuticals. 2022;15(4):440.PubMedPubMedCentralCrossRef
289.
go back to reference Erickson-Miller CL, et al. Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Exp Hematol. 2005;33(1):85–93.PubMedCrossRef Erickson-Miller CL, et al. Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Exp Hematol. 2005;33(1):85–93.PubMedCrossRef
291.
293.
go back to reference Han Z, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature. 2010;464(7292):1205–9.PubMedCrossRef Han Z, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature. 2010;464(7292):1205–9.PubMedCrossRef
294.
go back to reference Xiao L, et al. FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in Glioma. Can Res. 2020;80(18):3945–58.CrossRef Xiao L, et al. FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in Glioma. Can Res. 2020;80(18):3945–58.CrossRef
296.
go back to reference Liu Y, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221.PubMedCrossRef Liu Y, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221.PubMedCrossRef
297.
go back to reference Li N, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117(33):20159–70.PubMedPubMedCentralCrossRef Li N, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020;117(33):20159–70.PubMedPubMedCentralCrossRef
298.
go back to reference Müller S, et al. The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res. 2020;48(15):8576–90.PubMedPubMedCentralCrossRef Müller S, et al. The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res. 2020;48(15):8576–90.PubMedPubMedCentralCrossRef
299.
go back to reference Ianniello Z, et al. New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis. 2021;12(10):870.PubMedPubMedCentralCrossRef Ianniello Z, et al. New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis. 2021;12(10):870.PubMedPubMedCentralCrossRef
301.
302.
go back to reference Liu X, et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/beta-catenin pathway. J Exp Clin Cancer Res. 2021;40(1):132.PubMedPubMedCentralCrossRef Liu X, et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/beta-catenin pathway. J Exp Clin Cancer Res. 2021;40(1):132.PubMedPubMedCentralCrossRef
303.
go back to reference Liu L, et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022;12(5):e778.PubMedPubMedCentralCrossRef Liu L, et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022;12(5):e778.PubMedPubMedCentralCrossRef
304.
go back to reference Jiang H, et al. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m(6)A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine. 2022;94:153823.PubMedCrossRef Jiang H, et al. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m(6)A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine. 2022;94:153823.PubMedCrossRef
305.
go back to reference Wang Q, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.PubMedPubMedCentralCrossRef Wang Q, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.PubMedPubMedCentralCrossRef
307.
go back to reference Liu J, et al. N(6) -methyladenosine-modified lncRNA ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clin Transl Med. 2022;12(11):e1107.PubMedPubMedCentralCrossRef Liu J, et al. N(6) -methyladenosine-modified lncRNA ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clin Transl Med. 2022;12(11):e1107.PubMedPubMedCentralCrossRef
Metadata
Title
Methyltransferase-like proteins in cancer biology and potential therapeutic targeting
Authors
Ya-Nan Qi
Zhu Liu
Lian-Lian Hong
Pei Li
Zhi-Qiang Ling
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Metastasis
Published in
Journal of Hematology & Oncology / Issue 1/2023
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01477-7

Other articles of this Issue 1/2023

Journal of Hematology & Oncology 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine