Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Metastasis | Research

Hepatic passaging of NRAS-mutant melanoma influences adhesive properties and metastatic pattern

Authors: Bianca Dietsch, Céline Weller, Carsten Sticht, Carolina de la Torre, Martin Kramer, Sergij Goerdt, Cyrill Géraud, Sebastian A. Wohlfeil

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Liver metastasis is a poor prognostic factor for treatment of advanced cutaneous melanoma with either immunotherapy or targeted therapies. In this study we focused on NRAS mutated melanoma, a cohort with high unmet clinical need.

Methods

WT31 melanoma was repeatedly passaged over the liver after intravenous injections five times generating the subline WT31_P5IV. The colonization of target organs, morphology, vascularization and the gene expression profiles of metastases were analyzed.

Results

After intravenous injection lung metastasis was significantly decreased and a trend towards increased liver metastasis was detected for WT31_P5IV as compared to parental WT31. Besides, the ratio of lung to liver metastases was significantly smaller. Histology of lung metastases revealed reduced proliferation of WT31_P5IV in relation to WT31 while both size and necrotic areas were unaltered. Liver metastases of both sublines showed no differences in vascularization, proliferation or necrosis. To identify tumor-intrinsic factors that altered the metastatic pattern of WT31_P5IV RNA sequencing was performed and revealed a differential regulation of pathways involved in cell adhesion. Ex vivo fluorescence imaging confirmed that initial tumor cell retention in the lungs was significantly reduced in WT31_P5IV in comparison to WT31.

Conclusion

This study demonstrates that tumor-intrinsic properties influencing the metastatic pattern of NRAS mutated melanoma are strongly affected by hepatic passaging and the hematogenous route tumor cells take. It has implications for the clinical setting as such effects might also occur during metastatic spread or disease progression in melanoma patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg. 1978;135(6):807–10.PubMedCrossRef Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg. 1978;135(6):807–10.PubMedCrossRef
2.
go back to reference Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017;5(5):417–24.PubMedPubMedCentralCrossRef Tumeh PC, Hellmann MD, Hamid O, Tsai KK, Loo KL, Gubens MA, et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017;5(5):417–24.PubMedPubMedCentralCrossRef
3.
go back to reference Hauschild A, Larkin J, Ribas A, Dréno B, Flaherty KT, Ascierto PA, et al. Modeled prognostic subgroups for survival and treatment outcomes in BRAF V600-mutated metastatic melanoma: pooled analysis of 4 randomized clinical trials. JAMA Oncol. 2018;4(10):1382–8.PubMedPubMedCentralCrossRef Hauschild A, Larkin J, Ribas A, Dréno B, Flaherty KT, Ascierto PA, et al. Modeled prognostic subgroups for survival and treatment outcomes in BRAF V600-mutated metastatic melanoma: pooled analysis of 4 randomized clinical trials. JAMA Oncol. 2018;4(10):1382–8.PubMedPubMedCentralCrossRef
4.
go back to reference Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRef Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.PubMedCrossRef
5.
6.
go back to reference Shain AH, Joseph NM, Yu R, Benhamida J, Liu S, Prow T, et al. Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell. 2018;34(1):45-55.e4.PubMedPubMedCentralCrossRef Shain AH, Joseph NM, Yu R, Benhamida J, Liu S, Prow T, et al. Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell. 2018;34(1):45-55.e4.PubMedPubMedCentralCrossRef
7.
go back to reference Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.PubMedCrossRef Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.PubMedCrossRef
8.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRef Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRef
9.
go back to reference Adler NR, Wolfe R, Kelly JW, Haydon A, McArthur GA, McLean CA, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117(7):1026–35.PubMedPubMedCentralCrossRef Adler NR, Wolfe R, Kelly JW, Haydon A, McArthur GA, McLean CA, et al. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117(7):1026–35.PubMedPubMedCentralCrossRef
10.
go back to reference Jakob JA, Bassett RL, Ng CS, Curry JL, Joseph RW, Alvarado GC, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23.PubMedCrossRef Jakob JA, Bassett RL, Ng CS, Curry JL, Joseph RW, Alvarado GC, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23.PubMedCrossRef
11.
go back to reference Heppt MV, Wang JX, Hristova DM, Wei Z, Li L, Evans B, et al. MSX1-induced neural crest-like reprogramming promotes melanoma progression. J Invest Dermatol. 2018;138(1):141–9.PubMedCrossRef Heppt MV, Wang JX, Hristova DM, Wei Z, Li L, Evans B, et al. MSX1-induced neural crest-like reprogramming promotes melanoma progression. J Invest Dermatol. 2018;138(1):141–9.PubMedCrossRef
12.
go back to reference Shain AH, Garrido M, Botton T, Talevich E, Yeh I, Sanborn JZ, et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet. 2015;47(10):1194–9.PubMedPubMedCentralCrossRef Shain AH, Garrido M, Botton T, Talevich E, Yeh I, Sanborn JZ, et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet. 2015;47(10):1194–9.PubMedPubMedCentralCrossRef
13.
go back to reference Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996–1002.PubMedPubMedCentralCrossRef Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996–1002.PubMedPubMedCentralCrossRef
14.
go back to reference Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003;63(11):2881–90.PubMed Stahl JM, Cheung M, Sharma A, Trivedi NR, Shanmugam S, Robertson GP. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003;63(11):2881–90.PubMed
15.
go back to reference Sanborn JZ, Chung J, Purdom E, Wang NJ, Kakavand H, Wilmott JS, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A. 2015;112(35):10995–1000.PubMedPubMedCentralCrossRef Sanborn JZ, Chung J, Purdom E, Wang NJ, Kakavand H, Wilmott JS, et al. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A. 2015;112(35):10995–1000.PubMedPubMedCentralCrossRef
16.
go back to reference Gartner JJ, Davis S, Wei X, Lin JC, Trivedi NS, Teer JK, et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics. 2012;13:505.PubMedPubMedCentralCrossRef Gartner JJ, Davis S, Wei X, Lin JC, Trivedi NS, Teer JK, et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics. 2012;13:505.PubMedPubMedCentralCrossRef
17.
go back to reference van der Weyden L, Offord V, Turner G, Swiatkowska A, Speak AO, Adams DJ. Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice. G3 (Bethesda). 2021;11(7). van der Weyden L, Offord V, Turner G, Swiatkowska A, Speak AO, Adams DJ. Membrane protein regulators of melanoma pulmonary colonisation identified using a CRISPRa screen and spontaneous metastasis assay in mice. G3 (Bethesda). 2021;11(7).
18.
go back to reference Chen Y, Sumardika IW, Tomonobu N, Winarsa Ruma IM, Kinoshita R, Kondo E, et al. Melanoma cell adhesion molecule is the driving force behind the dissemination of melanoma upon S100A8/A9 binding in the original skin lesion. Cancer Lett. 2019;452:178–90.PubMedCrossRef Chen Y, Sumardika IW, Tomonobu N, Winarsa Ruma IM, Kinoshita R, Kondo E, et al. Melanoma cell adhesion molecule is the driving force behind the dissemination of melanoma upon S100A8/A9 binding in the original skin lesion. Cancer Lett. 2019;452:178–90.PubMedCrossRef
19.
go back to reference Tomonobu N, Kinoshita R, Wake H, Inoue Y, Ruma IMW, Suzawa K, et al. Histidine-rich glycoprotein suppresses the S100A8/A9-mediated organotropic metastasis of melanoma cells. Int J Mol Sci. 2022;23(18):10300. Tomonobu N, Kinoshita R, Wake H, Inoue Y, Ruma IMW, Suzawa K, et al. Histidine-rich glycoprotein suppresses the S100A8/A9-mediated organotropic metastasis of melanoma cells. Int J Mol Sci. 2022;23(18):10300.
20.
go back to reference Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A. 1995;92(19):8754–8.PubMedPubMedCentralCrossRef Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc Natl Acad Sci U S A. 1995;92(19):8754–8.PubMedPubMedCentralCrossRef
21.
go back to reference Berta J, Török S, Tárnoki-Zách J, Drozdovszky O, Tóvári J, Paku S, et al. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Sci Rep. 2021;11(1):5798.PubMedPubMedCentralCrossRef Berta J, Török S, Tárnoki-Zách J, Drozdovszky O, Tóvári J, Paku S, et al. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Sci Rep. 2021;11(1):5798.PubMedPubMedCentralCrossRef
22.
go back to reference Abdul Pari AA, Singhal M, Hübers C, Mogler C, Schieb B, Gampp A, et al. Tumor cell-derived angiopoietin-2 promotes metastasis in melanoma. Cancer Res. 2020;80(12):2586–98.PubMedCrossRef Abdul Pari AA, Singhal M, Hübers C, Mogler C, Schieb B, Gampp A, et al. Tumor cell-derived angiopoietin-2 promotes metastasis in melanoma. Cancer Res. 2020;80(12):2586–98.PubMedCrossRef
23.
go back to reference Forsthuber A, Lipp K, Andersen L, Ebersberger S, Graña-Castro, Ellmeier W, et al. CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma. J Invest Dermatol. 2019;139(1):186–94.PubMedCrossRef Forsthuber A, Lipp K, Andersen L, Ebersberger S, Graña-Castro, Ellmeier W, et al. CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma. J Invest Dermatol. 2019;139(1):186–94.PubMedCrossRef
24.
go back to reference Morikawa K, Walker SM, Jessup JM, Fidler IJ. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 1988;48(7):1943–8.PubMed Morikawa K, Walker SM, Jessup JM, Fidler IJ. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 1988;48(7):1943–8.PubMed
25.
go back to reference Hill RP, Chambers AF, Ling V, Harris JF. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science. 1984;224(4652):998–1001.PubMedCrossRef Hill RP, Chambers AF, Ling V, Harris JF. Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. Science. 1984;224(4652):998–1001.PubMedCrossRef
26.
go back to reference Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol. 1973;242(118):148–9.PubMedCrossRef Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol. 1973;242(118):148–9.PubMedCrossRef
27.
go back to reference Yoshimura K, Meckel KF, Laird LS, Chia CY, Park JJ, Olino KL, et al. Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 2009;69(18):7320–8.PubMedPubMedCentralCrossRef Yoshimura K, Meckel KF, Laird LS, Chia CY, Park JJ, Olino KL, et al. Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 2009;69(18):7320–8.PubMedPubMedCentralCrossRef
28.
go back to reference Zhang W, Zhang B, Vu T, Yuan G, Chen X, Manne U, et al. Molecular characterization of pro-metastatic functions of β4-integrin in colorectal cancer. Oncotarget. 2017;8(54):92333–45.PubMedPubMedCentralCrossRef Zhang W, Zhang B, Vu T, Yuan G, Chen X, Manne U, et al. Molecular characterization of pro-metastatic functions of β4-integrin in colorectal cancer. Oncotarget. 2017;8(54):92333–45.PubMedPubMedCentralCrossRef
29.
go back to reference Kanda Y, Osaki M, Onuma K, Sonoda A, Kobayashi M, Hamada J, et al. Amigo2-upregulation in tumour cells facilitates their attachment to liver endothelial cells resulting in liver metastases. Sci Rep. 2017;7:43567.PubMedPubMedCentralCrossRef Kanda Y, Osaki M, Onuma K, Sonoda A, Kobayashi M, Hamada J, et al. Amigo2-upregulation in tumour cells facilitates their attachment to liver endothelial cells resulting in liver metastases. Sci Rep. 2017;7:43567.PubMedPubMedCentralCrossRef
30.
go back to reference Liu D, Lin JR, Robitschek EJ, Kasumova GG, Heyde A, Shi A, et al. Evolution of delayed resistance to immunotherapy in a melanoma responder. Nat Med. 2021;27(6):985–92.PubMedPubMedCentralCrossRef Liu D, Lin JR, Robitschek EJ, Kasumova GG, Heyde A, Shi A, et al. Evolution of delayed resistance to immunotherapy in a melanoma responder. Nat Med. 2021;27(6):985–92.PubMedPubMedCentralCrossRef
31.
go back to reference Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021;39(5):610–31.PubMedPubMedCentralCrossRef Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021;39(5):610–31.PubMedPubMedCentralCrossRef
32.
go back to reference van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.PubMedPubMedCentralCrossRef van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.PubMedPubMedCentralCrossRef
33.
go back to reference Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL, et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun. 2011;2:555.PubMedCrossRef Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL, et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun. 2011;2:555.PubMedCrossRef
34.
go back to reference Wohlfeil SA, Hafele V, Dietsch B, Weller C, Sticht C, Jauch AS, et al. Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment. J Transl Med. 2022;20(1):62.PubMedPubMedCentralCrossRef Wohlfeil SA, Hafele V, Dietsch B, Weller C, Sticht C, Jauch AS, et al. Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment. J Transl Med. 2022;20(1):62.PubMedPubMedCentralCrossRef
35.
go back to reference Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, et al. Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Res. 2019;79(3):598–610.PubMedCrossRef Wohlfeil SA, Häfele V, Dietsch B, Schledzewski K, Winkler M, Zierow J, et al. Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Res. 2019;79(3):598–610.PubMedCrossRef
36.
go back to reference Jauch AS, Wohlfeil SA, Weller C, Dietsch B, Häfele V, Stojanovic A, et al. Lyve-1 deficiency enhances the hepatic immune microenvironment entailing altered susceptibility to melanoma liver metastasis. Cancer Cell Int. 2022;22(1):398.PubMedPubMedCentralCrossRef Jauch AS, Wohlfeil SA, Weller C, Dietsch B, Häfele V, Stojanovic A, et al. Lyve-1 deficiency enhances the hepatic immune microenvironment entailing altered susceptibility to melanoma liver metastasis. Cancer Cell Int. 2022;22(1):398.PubMedPubMedCentralCrossRef
37.
go back to reference H Backman TW, Girke T. systemPipeR: NGS workflow and report generation environment. BMC Bioinform. 2016;17:388.CrossRef H Backman TW, Girke T. systemPipeR: NGS workflow and report generation environment. BMC Bioinform. 2016;17:388.CrossRef
38.
go back to reference Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.PubMedCrossRef Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.PubMedCrossRef
39.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.PubMedPubMedCentralCrossRef
40.
go back to reference Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.PubMedCrossRef Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.PubMedCrossRef
41.
go back to reference Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv; 2016. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv; 2016.
42.
go back to reference Geistlinger L, Csaba G, Zimmer R. Bioconductor’s EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinformatics. 2016;17:45.PubMedPubMedCentralCrossRef Geistlinger L, Csaba G, Zimmer R. Bioconductor’s EnrichmentBrowser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinformatics. 2016;17:45.PubMedPubMedCentralCrossRef
43.
go back to reference Dar AA, Majid S, Nosrati M, de Semir D, Federman S, Kashani-Sabet M. Functional modulation of IGF-binding protein-3 expression in melanoma. J Invest Dermatol. 2010;130(8):2071–9.PubMedPubMedCentralCrossRef Dar AA, Majid S, Nosrati M, de Semir D, Federman S, Kashani-Sabet M. Functional modulation of IGF-binding protein-3 expression in melanoma. J Invest Dermatol. 2010;130(8):2071–9.PubMedPubMedCentralCrossRef
44.
go back to reference Paget S. The distribution of secondary growths in cancer of the breast. 1989. Cancer Metastasis Rev. 1989;8(2):98–101.PubMed Paget S. The distribution of secondary growths in cancer of the breast. 1989. Cancer Metastasis Rev. 1989;8(2):98–101.PubMed
45.
go back to reference Ewing J. Neoplastic diseases. A treatise on tumors. Philadelphia & London: W. B. Saunders Co; 1922. Ewing J. Neoplastic diseases. A treatise on tumors. Philadelphia & London: W. B. Saunders Co; 1922.
46.
go back to reference Spivey KA, Chung I, Banyard J, Adini I, Feldman HA, Zetter BR. A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis. Oncogene. 2012;31(18):2362–72.PubMedCrossRef Spivey KA, Chung I, Banyard J, Adini I, Feldman HA, Zetter BR. A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis. Oncogene. 2012;31(18):2362–72.PubMedCrossRef
47.
go back to reference Li Y, Xi Y, Zhu G, Jia J, Huang H, Liu Y, et al. Downregulated IGFBP7 facilitates liver metastasis by modulating epithelial-mesenchymal transition in colon cancer. Oncol Rep. 2019;42(5):1935–45.PubMedPubMedCentral Li Y, Xi Y, Zhu G, Jia J, Huang H, Liu Y, et al. Downregulated IGFBP7 facilitates liver metastasis by modulating epithelial-mesenchymal transition in colon cancer. Oncol Rep. 2019;42(5):1935–45.PubMedPubMedCentral
48.
go back to reference Birtolo C, Pham H, Morvaridi S, Chheda C, Go VL, Ptasznik A, et al. Cadherin-11 is a cell surface marker up-regulated in activated pancreatic stellate cells and is involved in pancreatic cancer cell migration. Am J Pathol. 2017;187(1):146–55.PubMedPubMedCentralCrossRef Birtolo C, Pham H, Morvaridi S, Chheda C, Go VL, Ptasznik A, et al. Cadherin-11 is a cell surface marker up-regulated in activated pancreatic stellate cells and is involved in pancreatic cancer cell migration. Am J Pathol. 2017;187(1):146–55.PubMedPubMedCentralCrossRef
49.
go back to reference Langhe RP, Gudzenko T, Bachmann M, Becker SF, Gonnermann C, Winter C, et al. Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion. Nat Commun. 2016;7:10909.PubMedPubMedCentralCrossRef Langhe RP, Gudzenko T, Bachmann M, Becker SF, Gonnermann C, Winter C, et al. Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion. Nat Commun. 2016;7:10909.PubMedPubMedCentralCrossRef
50.
go back to reference Hatano M, Matsumoto Y, Fukushi J, Matsunobu T, Endo M, Okada S, et al. Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone. Clin Exp Metastasis. 2015;32(6):579–91.PubMedCrossRef Hatano M, Matsumoto Y, Fukushi J, Matsunobu T, Endo M, Okada S, et al. Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone. Clin Exp Metastasis. 2015;32(6):579–91.PubMedCrossRef
51.
go back to reference Liu QH, Ma LS. Knockdown of thrombospondin 2 inhibits metastasis through modulation of PI3K signaling pathway in uveal melanoma cell line M23. Eur Rev Med Pharmacol Sci. 2018;22(19):6230–8.PubMed Liu QH, Ma LS. Knockdown of thrombospondin 2 inhibits metastasis through modulation of PI3K signaling pathway in uveal melanoma cell line M23. Eur Rev Med Pharmacol Sci. 2018;22(19):6230–8.PubMed
52.
go back to reference Qian Z, Zhang G, Song G, Shi J, Gong L, Mou Y, et al. Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis. Oncotarget. 2017;8(15):25500–12.PubMedPubMedCentralCrossRef Qian Z, Zhang G, Song G, Shi J, Gong L, Mou Y, et al. Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis. Oncotarget. 2017;8(15):25500–12.PubMedPubMedCentralCrossRef
53.
go back to reference Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res. 2018;37(1):92.PubMedPubMedCentralCrossRef Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res. 2018;37(1):92.PubMedPubMedCentralCrossRef
54.
go back to reference Sun S, Shi R, Xu L, Sun F. Identification of heterogeneity and prognostic key genes associated with uveal melanoma using single-cell RNA-sequencing technology. Melanoma Res. 2022;32(1):18–26.PubMedCrossRef Sun S, Shi R, Xu L, Sun F. Identification of heterogeneity and prognostic key genes associated with uveal melanoma using single-cell RNA-sequencing technology. Melanoma Res. 2022;32(1):18–26.PubMedCrossRef
55.
go back to reference Karras P, Bordeu I, Pozniak J, Nowosad A, Pazzi C, Van Raemdonck N, et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature. 2022;610(7930):190–8.PubMedCrossRef Karras P, Bordeu I, Pozniak J, Nowosad A, Pazzi C, Van Raemdonck N, et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature. 2022;610(7930):190–8.PubMedCrossRef
56.
go back to reference Lang Z, Chen Y, Zhu H, Sun Y, Zhang H, Huang J, et al. Prognostic and clinicopathological significance of CapG in various cancers: evidence from a meta-analysis. Pathol Res Pract. 2019;215(12):152683.PubMedCrossRef Lang Z, Chen Y, Zhu H, Sun Y, Zhang H, Huang J, et al. Prognostic and clinicopathological significance of CapG in various cancers: evidence from a meta-analysis. Pathol Res Pract. 2019;215(12):152683.PubMedCrossRef
57.
go back to reference Wu JH, Tian XY, Hao CY. The significance of a group of molecular markers and clinicopathological factors in identifying colorectal liver metastasis. Hepatogastroenterology. 2011;58(109):1182–8.PubMedCrossRef Wu JH, Tian XY, Hao CY. The significance of a group of molecular markers and clinicopathological factors in identifying colorectal liver metastasis. Hepatogastroenterology. 2011;58(109):1182–8.PubMedCrossRef
58.
go back to reference Liu S, Zhang Y, Zhang S, Qiu L, Zhang B, Han J. Identification of hub genes related to liver metastasis of colorectal cancer by integrative analysis. Front Oncol. 2021;11:714866.PubMedPubMedCentralCrossRef Liu S, Zhang Y, Zhang S, Qiu L, Zhang B, Han J. Identification of hub genes related to liver metastasis of colorectal cancer by integrative analysis. Front Oncol. 2021;11:714866.PubMedPubMedCentralCrossRef
59.
go back to reference Zhao Z, Zou S, Guan X, Wang M, Jiang Z, Liu Z, et al. Apolipoprotein E overexpression is associated with tumor progression and poor survival in colorectal cancer. Front Genet. 2018;9:650.PubMedPubMedCentralCrossRef Zhao Z, Zou S, Guan X, Wang M, Jiang Z, Liu Z, et al. Apolipoprotein E overexpression is associated with tumor progression and poor survival in colorectal cancer. Front Genet. 2018;9:650.PubMedPubMedCentralCrossRef
60.
go back to reference Andreucci E, Pietrobono S, Peppicelli S, Ruzzolini J, Bianchini F, Biagioni A, et al. SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Commun Signal. 2018;16(1):87.PubMedPubMedCentralCrossRef Andreucci E, Pietrobono S, Peppicelli S, Ruzzolini J, Bianchini F, Biagioni A, et al. SOX2 as a novel contributor of oxidative metabolism in melanoma cells. Cell Commun Signal. 2018;16(1):87.PubMedPubMedCentralCrossRef
61.
go back to reference Skuja E, Butane D, Nakazawa-Miklasevica M, Daneberga Z, Purkalne G, Miklasevics E. Deletions in metastatic colorectal cancer with chromothripsis. Exp Oncol. 2019;41(4):323–7.PubMed Skuja E, Butane D, Nakazawa-Miklasevica M, Daneberga Z, Purkalne G, Miklasevics E. Deletions in metastatic colorectal cancer with chromothripsis. Exp Oncol. 2019;41(4):323–7.PubMed
62.
go back to reference Ablain J, Al Mahi A, Rothschild H, Prasad M, Aires S, Yang S, et al. Loss of NECTIN1 triggers melanoma dissemination upon local IGF1 depletion. Nat Genet. 2022;54(12):1839–52. Ablain J, Al Mahi A, Rothschild H, Prasad M, Aires S, Yang S, et al. Loss of NECTIN1 triggers melanoma dissemination upon local IGF1 depletion. Nat Genet. 2022;54(12):1839–52.
63.
go back to reference Wei X, Prickett TD, Viloria CG, Molinolo A, Lin JC, Cardenas-Navia I, et al. Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mol Cancer Res. 2010;8(11):1513–25.PubMedPubMedCentralCrossRef Wei X, Prickett TD, Viloria CG, Molinolo A, Lin JC, Cardenas-Navia I, et al. Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mol Cancer Res. 2010;8(11):1513–25.PubMedPubMedCentralCrossRef
Metadata
Title
Hepatic passaging of NRAS-mutant melanoma influences adhesive properties and metastatic pattern
Authors
Bianca Dietsch
Céline Weller
Carsten Sticht
Carolina de la Torre
Martin Kramer
Sergij Goerdt
Cyrill Géraud
Sebastian A. Wohlfeil
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10912-4

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine