Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Metastasis | Research article

A new rapid diagnostic system with ambient mass spectrometry and machine learning for colorectal liver metastasis

Authors: Sho Kiritani, Kentaro Yoshimura, Junichi Arita, Takashi Kokudo, Hiroyuki Hakoda, Meguri Tanimoto, Takeaki Ishizawa, Nobuhisa Akamatsu, Junichi Kaneko, Sen Takeda, Kiyoshi Hasegawa

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Probe electrospray ionization-mass spectrometry (PESI-MS) can rapidly visualize mass spectra of small, surgically obtained tissue samples, and is a promising novel diagnostic tool when combined with machine learning which discriminates malignant spectrum patterns from others. The present study was performed to evaluate the utility of this device for rapid diagnosis of colorectal liver metastasis (CRLM).

Methods

A prospectively planned study using retrospectively obtained tissues was performed. In total, 103 CRLM samples and 80 non-cancer liver tissues cut from surgically extracted specimens were analyzed using PESI-MS. Mass spectra obtained by PESI-MS were classified into cancer or non-cancer groups by using logistic regression, a kind of machine learning. Next, to identify the exact molecules responsible for the difference between CRLM and non-cancerous tissues, we performed liquid chromatography-electrospray ionization-MS (LC-ESI-MS), which visualizes sample molecular composition in more detail.

Results

This diagnostic system distinguished CRLM from non-cancer liver parenchyma with an accuracy rate of 99.5%. The area under the receiver operating characteristic curve reached 0.9999. LC-ESI-MS analysis showed higher ion intensities of phosphatidylcholine and phosphatidylethanolamine in CRLM than in non-cancer liver parenchyma (P < 0.01, respectively). The proportion of phospholipids categorized as monounsaturated fatty acids was higher in CRLM (37.2%) than in non-cancer liver parenchyma (10.7%; P < 0.01).

Conclusion

The combination of PESI-MS and machine learning distinguished CRLM from non-cancer tissue with high accuracy. Phospholipids categorized as monounsaturated fatty acids contributed to the difference between CRLM and normal parenchyma and might also be a useful diagnostic biomarker and therapeutic target for CRLM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lochan R, White SA, Manas DM. Liver resection for colorectal liver metastasis. Surg Oncol. 2007;16(1):33–45.CrossRef Lochan R, White SA, Manas DM. Liver resection for colorectal liver metastasis. Surg Oncol. 2007;16(1):33–45.CrossRef
2.
go back to reference Engstrand J, Nilsson H, Stromberg C, et al. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer. 2018;18(1):78.CrossRef Engstrand J, Nilsson H, Stromberg C, et al. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer. 2018;18(1):78.CrossRef
3.
go back to reference Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422.CrossRef Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422.CrossRef
4.
go back to reference Sadot E, Groot Koerkamp B, Leal JN, et al. Resection margin and survival in 2368 patients undergoing hepatic resection for metastatic colorectal cancer: surgical technique or biologic surrogate? Ann Surg. 2015;262(3):476–85 discussion 483–5.CrossRef Sadot E, Groot Koerkamp B, Leal JN, et al. Resection margin and survival in 2368 patients undergoing hepatic resection for metastatic colorectal cancer: surgical technique or biologic surrogate? Ann Surg. 2015;262(3):476–85 discussion 483–5.CrossRef
5.
go back to reference Hamady ZZ, Lodge JP, Welsh FK, et al. One-millimeter cancer-free margin is curative for colorectal liver metastases: a propensity score case-match approach. Ann Surg. 2014;259(3):543–8.CrossRef Hamady ZZ, Lodge JP, Welsh FK, et al. One-millimeter cancer-free margin is curative for colorectal liver metastases: a propensity score case-match approach. Ann Surg. 2014;259(3):543–8.CrossRef
6.
go back to reference Torzilli G, Del Fabbro D, Palmisano A, et al. Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J Gastrointest Surg. 2005;9(8):1148–53 discussion 1153–4.CrossRef Torzilli G, Del Fabbro D, Palmisano A, et al. Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J Gastrointest Surg. 2005;9(8):1148–53 discussion 1153–4.CrossRef
7.
go back to reference Takahashi M, Hasegawa K, Arita J, et al. Contrast-enhanced intraoperative ultrasonography using perfluorobutane microbubbles for the enumeration of colorectal liver metastases. Br J Surg. 2012;99(9):1271–7.CrossRef Takahashi M, Hasegawa K, Arita J, et al. Contrast-enhanced intraoperative ultrasonography using perfluorobutane microbubbles for the enumeration of colorectal liver metastases. Br J Surg. 2012;99(9):1271–7.CrossRef
8.
go back to reference Hoareau J, Venara A, Lebigot J, et al. Intraoperative contrast-enhanced ultrasound in colorectal liver metastasis surgery improves the identification and characterization of nodules. World J Surg. 2016;40(1):190–7.CrossRef Hoareau J, Venara A, Lebigot J, et al. Intraoperative contrast-enhanced ultrasound in colorectal liver metastasis surgery improves the identification and characterization of nodules. World J Surg. 2016;40(1):190–7.CrossRef
9.
go back to reference Evans CA, Suvarna SK. Intraoperative diagnosis using the frozen section technique. J Clin Pathol. 2006;59(3):334.CrossRef Evans CA, Suvarna SK. Intraoperative diagnosis using the frozen section technique. J Clin Pathol. 2006;59(3):334.CrossRef
10.
go back to reference Takeda S, Yoshimura K, Hiraoka K. Innovations in analytic oncology - status quo of mass spectrometry-based diagnosis for malignant tumor. J Anal Oncol. 2012;1:74–80. Takeda S, Yoshimura K, Hiraoka K. Innovations in analytic oncology - status quo of mass spectrometry-based diagnosis for malignant tumor. J Anal Oncol. 2012;1:74–80.
11.
go back to reference Yoshimura K, Mandal MK, Hara M, et al. Real-time diagnosis of chemically induced hepatocellular carcinoma using a novel mass spectrometry-based technique. Anal Biochem. 2013;441(1):32–7.CrossRef Yoshimura K, Mandal MK, Hara M, et al. Real-time diagnosis of chemically induced hepatocellular carcinoma using a novel mass spectrometry-based technique. Anal Biochem. 2013;441(1):32–7.CrossRef
12.
go back to reference Ashizawa K, Yoshimura K, Johno H, et al. Construction of mass spectra database and diagnosis algorithm for head and neck squamous cell carcinoma. Oral Oncol. 2017;75:111–9.CrossRef Ashizawa K, Yoshimura K, Johno H, et al. Construction of mass spectra database and diagnosis algorithm for head and neck squamous cell carcinoma. Oral Oncol. 2017;75:111–9.CrossRef
13.
go back to reference Takeda S, Yoshimura K, Tanihata H. Sample preparation for probe electrospray ionization mass spectrometry. J Vis Exp. 2019:e59942. Takeda S, Yoshimura K, Tanihata H. Sample preparation for probe electrospray ionization mass spectrometry. J Vis Exp. 2019:e59942.
14.
go back to reference Johno H, Yoshimura K, Mori Y, et al. Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry. Metabolomics. 2018;14(4):38.CrossRef Johno H, Yoshimura K, Mori Y, et al. Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry. Metabolomics. 2018;14(4):38.CrossRef
15.
go back to reference Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21(15):3301–7.CrossRef Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21(15):3301–7.CrossRef
16.
go back to reference Barog J, Sasi-Szabo L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93. Barog J, Sasi-Szabo L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):194ra93.
17.
go back to reference Brown H, Pirro V, Cooks R. From DESI to the MasSpec Pen: ambient ionization mass spectrometry for tissue analysis and intrasurgical cancer diagnosis. Clin Chem. 2018;64(4):628–30.CrossRef Brown H, Pirro V, Cooks R. From DESI to the MasSpec Pen: ambient ionization mass spectrometry for tissue analysis and intrasurgical cancer diagnosis. Clin Chem. 2018;64(4):628–30.CrossRef
18.
go back to reference Hiroyoshi J, Arita J, Gonoi W, et al. Significance of Glisson’s capsule invasion in patients with colorectal liver metastases undergoing resection. Am J Surg. 2019;218(5):887–93.CrossRef Hiroyoshi J, Arita J, Gonoi W, et al. Significance of Glisson’s capsule invasion in patients with colorectal liver metastases undergoing resection. Am J Surg. 2019;218(5):887–93.CrossRef
19.
go back to reference Rakha E, Ramaiah S, McGregor A. Accuracy of frozen section in the diagnosis of liver mass lesions. J Clin Pathol. 2006;59(4):352–4.CrossRef Rakha E, Ramaiah S, McGregor A. Accuracy of frozen section in the diagnosis of liver mass lesions. J Clin Pathol. 2006;59(4):352–4.CrossRef
20.
go back to reference Perrotti F, Rosa C, Cicalini I, et al. Advances in lipidomics for cancer biomarkers discovery. Int J Mol Sci. 2016;17(12). Perrotti F, Rosa C, Cicalini I, et al. Advances in lipidomics for cancer biomarkers discovery. Int J Mol Sci. 2016;17(12).
21.
go back to reference Yang L, Li M, Shan Y, et al. Recent advances in lipidomics for disease research. J Sep Sci. 2016;39(1):38–50.CrossRef Yang L, Li M, Shan Y, et al. Recent advances in lipidomics for disease research. J Sep Sci. 2016;39(1):38–50.CrossRef
22.
go back to reference Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev. 2018;37(2):107–38.CrossRef Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev. 2018;37(2):107–38.CrossRef
23.
go back to reference Iwano T, Yoshimura K, Inoue S, et al. Breast cancer diagnosis based on lipid profiling by probe electrospray ionization mass spectrometry. Br J Surg. 2020;107(6):632–5.CrossRef Iwano T, Yoshimura K, Inoue S, et al. Breast cancer diagnosis based on lipid profiling by probe electrospray ionization mass spectrometry. Br J Surg. 2020;107(6):632–5.CrossRef
24.
go back to reference Wood R, Snyder F. Quantitative determination of alk-1-enyl- and alkyl-glyceryl ethers in neutral lipids and phospholipids. Lipids. 1968;3(2):129–35.CrossRef Wood R, Snyder F. Quantitative determination of alk-1-enyl- and alkyl-glyceryl ethers in neutral lipids and phospholipids. Lipids. 1968;3(2):129–35.CrossRef
25.
go back to reference Kurabe N, Hayasaka T, Ogawa M, et al. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci. 2013;104(10):1295–302.CrossRef Kurabe N, Hayasaka T, Ogawa M, et al. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci. 2013;104(10):1295–302.CrossRef
26.
go back to reference Guo S, Wang Y, Zhou D, et al. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep. 2014;4:5959.CrossRef Guo S, Wang Y, Zhou D, et al. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep. 2014;4:5959.CrossRef
27.
go back to reference Roongta UV, Pabalan JG, Wang X, et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res. 2011;9(11):1551–61.CrossRef Roongta UV, Pabalan JG, Wang X, et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res. 2011;9(11):1551–61.CrossRef
28.
go back to reference Shimma S, Sugiura Y, Hayasaka T, et al. MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855(1):98–103.CrossRef Shimma S, Sugiura Y, Hayasaka T, et al. MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855(1):98–103.CrossRef
29.
go back to reference Thomas A, Patterson NH, Marcinkiewicz MM, et al. Histology-driven data mining of lipid signatures from multiple imaging mass spectrometry analyses: application to human colorectal cancer liver metastasis biopsies. Anal Chem. 2013;85(5):2860–6.CrossRef Thomas A, Patterson NH, Marcinkiewicz MM, et al. Histology-driven data mining of lipid signatures from multiple imaging mass spectrometry analyses: application to human colorectal cancer liver metastasis biopsies. Anal Chem. 2013;85(5):2860–6.CrossRef
30.
go back to reference de Figueiredo Junior AG, Serafim PVP, de Melo AA, et al. Analysis of the lipid profile in patients with colorectal cancer in advanced stages. Asian Pac J Cancer Prev. 2018;19(5):1287–93.PubMed de Figueiredo Junior AG, Serafim PVP, de Melo AA, et al. Analysis of the lipid profile in patients with colorectal cancer in advanced stages. Asian Pac J Cancer Prev. 2018;19(5):1287–93.PubMed
31.
go back to reference Mason P, Liang B, Li L, et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS One. 2012;7(3):e33823.CrossRef Mason P, Liang B, Li L, et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS One. 2012;7(3):e33823.CrossRef
Metadata
Title
A new rapid diagnostic system with ambient mass spectrometry and machine learning for colorectal liver metastasis
Authors
Sho Kiritani
Kentaro Yoshimura
Junichi Arita
Takashi Kokudo
Hiroyuki Hakoda
Meguri Tanimoto
Takeaki Ishizawa
Nobuhisa Akamatsu
Junichi Kaneko
Sen Takeda
Kiyoshi Hasegawa
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08001-5

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine