Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Metastasis | Research article

Intratumoral heterogeneity of second-harmonic generation scattering from tumor collagen and its effects on metastatic risk prediction

Authors: Danielle E. Desa, Robert L. Strawderman, Wencheng Wu, Robert L. Hill, Marcel Smid, J. W. M. Martens, Bradley M. Turner, Edward B. Brown

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Metastases are the leading cause of breast cancer-related deaths. The tumor microenvironment impacts cancer progression and metastatic ability. Fibrillar collagen, a major extracellular matrix component, can be studied using the light scattering phenomenon known as second-harmonic generation (SHG). The ratio of forward- to backward-scattered SHG photons (F/B) is sensitive to collagen fiber internal structure and has been shown to be an independent prognostic indicator of metastasis-free survival time (MFS). Here we assess the effects of heterogeneity in the tumor matrix on the possible use of F/B as a prognostic tool.

Methods

SHG imaging was performed on sectioned primary tumor excisions from 95 untreated, estrogen receptor-positive, lymph node negative invasive ductal carcinoma patients. We identified two distinct regions whose collagen displayed different average F/B values, indicative of spatial heterogeneity: the cellular tumor bulk and surrounding tumor-stroma interface. To evaluate the impact of heterogeneity on F/B’s prognostic ability, we performed SHG imaging in the tumor bulk and tumor-stroma interface, calculated a 21-gene recurrence score (surrogate for OncotypeDX®, or S-ODX) for each patient and evaluated their combined prognostic ability.

Results

We found that F/B measured in tumor-stroma interface, but not tumor bulk, is prognostic of MFS using three methods to select pixels for analysis: an intensity threshold selected by a blinded observer, a histogram-based thresholding method, and an adaptive thresholding method. Using both regression trees and Random Survival Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. We also separated patients into low-intermediate (S-ODX < 26) and high risk (S-ODX ≥26) groups. In the low-intermediate risk group, comprised of patients not typically recommended for adjuvant chemotherapy, we find that F/B from the tumor-stroma interface is prognostic of MFS and can identify a patient cohort with poor outcomes.

Conclusions

These data demonstrate that intratumoral heterogeneity in F/B values can play an important role in its possible use as a prognostic marker, and that F/B from tumor-stroma interface of primary tumor excisions may provide useful information to stratify patients by metastatic risk.
Appendix
Available only for authorised users
Literature
2.
go back to reference Clark BZ, Onisko A, Assylbekova B, Li X, Bhargava R, Dabbs DJ. Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Mod Pathol. 2019;32(3):354–66.PubMedCrossRef Clark BZ, Onisko A, Assylbekova B, Li X, Bhargava R, Dabbs DJ. Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Mod Pathol. 2019;32(3):354–66.PubMedCrossRef
3.
go back to reference Turashvili G, Brogi E. Tumor Heterogeneity in Breast Cancer. Front Med (Lausanne). 2017;4:227.CrossRef Turashvili G, Brogi E. Tumor Heterogeneity in Breast Cancer. Front Med (Lausanne). 2017;4:227.CrossRef
4.
go back to reference Patani N, Barbashina V, Lambros MB, Gauthier A, Mansour M, Mackay A, et al. Direct evidence for concurrent morphological and genetic heterogeneity in an invasive ductal carcinoma of triple-negative phenotype. J Clin Pathol. 2011;64(9):822–8.PubMedCrossRef Patani N, Barbashina V, Lambros MB, Gauthier A, Mansour M, Mackay A, et al. Direct evidence for concurrent morphological and genetic heterogeneity in an invasive ductal carcinoma of triple-negative phenotype. J Clin Pathol. 2011;64(9):822–8.PubMedCrossRef
5.
go back to reference Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220(5):562–73.PubMedCrossRef Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220(5):562–73.PubMedCrossRef
6.
go back to reference Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL. Molecular heterogeneity in breast cancer: state of the science and implications for patient care. Semin Cell Dev Biol. 2017;64:65–72.PubMedCrossRef Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL. Molecular heterogeneity in breast cancer: state of the science and implications for patient care. Semin Cell Dev Biol. 2017;64:65–72.PubMedCrossRef
7.
go back to reference Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, Cohen C. Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl Immunohistochem Mol Morphol. 2010;18(5):433–41.PubMed Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, Cohen C. Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl Immunohistochem Mol Morphol. 2010;18(5):433–41.PubMed
8.
go back to reference Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, et al. Microenvironmental heterogeneity parallels breast Cancer progression: a histology-genomic integration analysis. PLoS Med. 2016;13(2):e1001961.PubMedPubMedCentralCrossRef Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, et al. Microenvironmental heterogeneity parallels breast Cancer progression: a histology-genomic integration analysis. PLoS Med. 2016;13(2):e1001961.PubMedPubMedCentralCrossRef
9.
go back to reference Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.PubMedCrossRef Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.PubMedCrossRef
10.
go back to reference Runa F, Hamalian S, Meade K, Shisgal P, Gray PC, Kelber JA. Tumor microenvironment heterogeneity: challenges and opportunities. Curr Mol Biol Rep. 2017;3(4):218–29.PubMedPubMedCentralCrossRef Runa F, Hamalian S, Meade K, Shisgal P, Gray PC, Kelber JA. Tumor microenvironment heterogeneity: challenges and opportunities. Curr Mol Biol Rep. 2017;3(4):218–29.PubMedPubMedCentralCrossRef
11.
go back to reference Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.PubMedCrossRef Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.PubMedCrossRef
13.
go back to reference Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.PubMedPubMedCentralCrossRef Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.PubMedPubMedCentralCrossRef
14.
go back to reference Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.PubMedPubMedCentralCrossRef Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165–78.PubMedPubMedCentralCrossRef
15.
go back to reference Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech Lett. 2018;21:25–34.PubMedPubMedCentralCrossRef Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech Lett. 2018;21:25–34.PubMedPubMedCentralCrossRef
16.
go back to reference Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:12.CrossRef Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:12.CrossRef
17.
go back to reference Kauppila S, Stenback F, Risteli J, Jukkola A, Risteli L. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998;186(3):262–8.PubMedCrossRef Kauppila S, Stenback F, Risteli J, Jukkola A, Risteli L. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol. 1998;186(3):262–8.PubMedCrossRef
18.
go back to reference Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.PubMedPubMedCentralCrossRef Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.PubMedPubMedCentralCrossRef
19.
go back to reference Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.PubMedPubMedCentralCrossRef Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178(3):1221–32.PubMedPubMedCentralCrossRef
20.
go back to reference Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J. 2014;107(11):2546–58.PubMedPubMedCentralCrossRef Riching KM, Cox BL, Salick MR, Pehlke C, Riching AS, Ponik SM, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J. 2014;107(11):2546–58.PubMedPubMedCentralCrossRef
21.
go back to reference Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.PubMedPubMedCentralCrossRef Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.PubMedPubMedCentralCrossRef
23.
go back to reference Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82.PubMedCrossRef Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82.PubMedCrossRef
26.
go back to reference Brown E, McKee T. diTomaso E, Pluen a, seed B, Boucher Y, et al. dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9(6):796–800.PubMedCrossRef Brown E, McKee T. diTomaso E, Pluen a, seed B, Boucher Y, et al. dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9(6):796–800.PubMedCrossRef
27.
go back to reference Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38.PubMedPubMedCentralCrossRef Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38.PubMedPubMedCentralCrossRef
28.
go back to reference Bredfeldt JS, Liu Y, Conklin MW, Keely PJ, Mackie TR, Eliceiri KW. Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform. 2014;5(1):28.PubMedPubMedCentralCrossRef Bredfeldt JS, Liu Y, Conklin MW, Keely PJ, Mackie TR, Eliceiri KW. Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform. 2014;5(1):28.PubMedPubMedCentralCrossRef
29.
go back to reference Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–30.PubMedCrossRef Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–30.PubMedCrossRef
30.
go back to reference Natal RA, Vassallo J, Paiva GR, Pelegati VB, Barbosa GO, Mendonca GR, et al. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumour Biol. 2018;40(4):1010428318770953.PubMedCrossRef Natal RA, Vassallo J, Paiva GR, Pelegati VB, Barbosa GO, Mendonca GR, et al. Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumour Biol. 2018;40(4):1010428318770953.PubMedCrossRef
31.
go back to reference Chen Z, Guo W, Kang D, Wang S, Zheng L, Xi G, et al. Label-free identification of early stages of breast ductal carcinoma via multiphoton microscopy. Scanning. 2020;2020:9670514.PubMedPubMedCentralCrossRef Chen Z, Guo W, Kang D, Wang S, Zheng L, Xi G, et al. Label-free identification of early stages of breast ductal carcinoma via multiphoton microscopy. Scanning. 2020;2020:9670514.PubMedPubMedCentralCrossRef
32.
go back to reference Wu Y, Fu F, Lian Y, Chen J, Wang C, Nie Y, et al. Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci. 2015;30(3):1109–15.PubMedCrossRef Wu Y, Fu F, Lian Y, Chen J, Wang C, Nie Y, et al. Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy. Lasers Med Sci. 2015;30(3):1109–15.PubMedCrossRef
33.
go back to reference Rouede D, Schaub E, Bellanger JJ, Ezan F, Scimeca JC, Baffet G, et al. Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy. Sci Rep. 2017;7(1):12197.PubMedPubMedCentralCrossRef Rouede D, Schaub E, Bellanger JJ, Ezan F, Scimeca JC, Baffet G, et al. Determination of extracellular matrix collagen fibril architectures and pathological remodeling by polarization dependent second harmonic microscopy. Sci Rep. 2017;7(1):12197.PubMedPubMedCentralCrossRef
34.
go back to reference Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC Jr. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express. 2012;3(9):2021–35.PubMedPubMedCentralCrossRef Ambekar R, Lau TY, Walsh M, Bhargava R, Toussaint KC Jr. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed Opt Express. 2012;3(9):2021–35.PubMedPubMedCentralCrossRef
35.
go back to reference Tsafas V, Gavgiotaki E, Tzardi M, Tsafa E, Fotakis C, Athanassakis I, et al. Polarization-dependent second-harmonic generation for collagen-based differentiation of breast cancer samples. J Biophotonics. 2020:e202000180. Tsafas V, Gavgiotaki E, Tzardi M, Tsafa E, Fotakis C, Athanassakis I, et al. Polarization-dependent second-harmonic generation for collagen-based differentiation of breast cancer samples. J Biophotonics. 2020:e202000180.
36.
go back to reference Mercatelli R, Triulzi T, Pavone FS, Orlandi R, Cicchi R. Collagen ultrastructural symmetry and its malignant alterations in human breast cancer revealed by polarization-resolved second-harmonic generation microscopy. J Biophotonics. 2020;13(8):e202000159.PubMedCrossRef Mercatelli R, Triulzi T, Pavone FS, Orlandi R, Cicchi R. Collagen ultrastructural symmetry and its malignant alterations in human breast cancer revealed by polarization-resolved second-harmonic generation microscopy. J Biophotonics. 2020;13(8):e202000159.PubMedCrossRef
37.
go back to reference Han X, Burke RM, Zettel ML, Tang P, Brown EB. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt Express. 2008;16(3):1846–59.PubMedCrossRef Han X, Burke RM, Zettel ML, Tang P, Brown EB. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt Express. 2008;16(3):1846–59.PubMedCrossRef
38.
go back to reference Lacomb R, Nadiarnykh O, Townsend SS, Campagnola PJ. Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun. 2008;281(7):1823–32.PubMedPubMedCentralCrossRef Lacomb R, Nadiarnykh O, Townsend SS, Campagnola PJ. Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology. Opt Commun. 2008;281(7):1823–32.PubMedPubMedCentralCrossRef
39.
go back to reference Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 2005;88(2):1377–86.PubMedCrossRef Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen I fibrils. Biophys J. 2005;88(2):1377–86.PubMedCrossRef
40.
go back to reference Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7(4):654–69.PubMedPubMedCentralCrossRef Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7(4):654–69.PubMedPubMedCentralCrossRef
41.
go back to reference Rao RA, Mehta MR, Toussaint KC Jr. Fourier transform-second-harmonic generation imaging of biological tissues. Opt Express. 2009;17(17):14534–42.PubMedCrossRef Rao RA, Mehta MR, Toussaint KC Jr. Fourier transform-second-harmonic generation imaging of biological tissues. Opt Express. 2009;17(17):14534–42.PubMedCrossRef
42.
go back to reference Burke K, Brown E. The use of second harmonic generation to image the extracellular matrix during tumor progression. Intravital. 2014;3(3):e984509.PubMedCrossRef Burke K, Brown E. The use of second harmonic generation to image the extracellular matrix during tumor progression. Intravital. 2014;3(3):e984509.PubMedCrossRef
43.
go back to reference Burke K, Tang P, Brown E. Second harmonic generation reveals matrix alterations during breast tumor progression. J Biomed Opt. 2013;18(3):31106.PubMedCrossRef Burke K, Tang P, Brown E. Second harmonic generation reveals matrix alterations during breast tumor progression. J Biomed Opt. 2013;18(3):31106.PubMedCrossRef
44.
go back to reference Nadiarnykh O, LaComb RB, Brewer MA, Campagnola PJ. Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer. 2010;10:94.PubMedPubMedCentralCrossRef Nadiarnykh O, LaComb RB, Brewer MA, Campagnola PJ. Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer. 2010;10:94.PubMedPubMedCentralCrossRef
45.
go back to reference Wang CC, Li FC, Wu RJ, Hovhannisyan VA, Lin WC, Lin SJ, et al. Differentiation of normal and cancerous lung tissues by multiphoton imaging. J Biomed Opt. 2009;14(4):044034.PubMedCrossRef Wang CC, Li FC, Wu RJ, Hovhannisyan VA, Lin WC, Lin SJ, et al. Differentiation of normal and cancerous lung tissues by multiphoton imaging. J Biomed Opt. 2009;14(4):044034.PubMedCrossRef
46.
go back to reference Lin SJ, Jee SH, Kuo CJ, Wu RJ, Lin WC, Chen JS, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett. 2006;31(18):2756–8.PubMedCrossRef Lin SJ, Jee SH, Kuo CJ, Wu RJ, Lin WC, Chen JS, et al. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett. 2006;31(18):2756–8.PubMedCrossRef
47.
go back to reference Burke K, Smid M, Dawes RP, Timmermans MA, Salzman P, van Deurzen CH, et al. Using second harmonic generation to predict patient outcome in solid tumors. BMC Cancer. 2015;15:929.PubMedPubMedCentralCrossRef Burke K, Smid M, Dawes RP, Timmermans MA, Salzman P, van Deurzen CH, et al. Using second harmonic generation to predict patient outcome in solid tumors. BMC Cancer. 2015;15:929.PubMedPubMedCentralCrossRef
48.
go back to reference Desa DE, Bhanote M, Hill RL, Majeski JB, Buscaglia B, D'Aguiar M, et al. Second-harmonic generation directionality is associated with neoadjuvant chemotherapy response in breast cancer core needle biopsies. J Biomed Opt. 2019;24(8):1–9.PubMedCrossRef Desa DE, Bhanote M, Hill RL, Majeski JB, Buscaglia B, D'Aguiar M, et al. Second-harmonic generation directionality is associated with neoadjuvant chemotherapy response in breast cancer core needle biopsies. J Biomed Opt. 2019;24(8):1–9.PubMedCrossRef
49.
go back to reference LeBlanc M, Crowley J. Relative risk trees for censored survival data. Biometrics. 1992;48(2):411–25.PubMedCrossRef LeBlanc M, Crowley J. Relative risk trees for censored survival data. Biometrics. 1992;48(2):411–25.PubMedCrossRef
50.
go back to reference Ishwaran H, Kogalur U, Blackstone E, Lauer M. Random survival forests. Annals of Applied Statistics. 2008;2(3):841–60.CrossRef Ishwaran H, Kogalur U, Blackstone E, Lauer M. Random survival forests. Annals of Applied Statistics. 2008;2(3):841–60.CrossRef
51.
go back to reference Early Breast Cancer Trialists' Collaborative G. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. N Engl J Med. 1995;333(22):1444–55. Early Breast Cancer Trialists' Collaborative G. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. N Engl J Med. 1995;333(22):1444–55.
52.
go back to reference Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, Timar J, et al. RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat. 2012;132(3):1025–34.PubMedCrossRef Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, Timar J, et al. RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat. 2012;132(3):1025–34.PubMedCrossRef
53.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRefPubMed Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRefPubMed
54.
go back to reference Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979;9(1):62–6.CrossRef Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber. 1979;9(1):62–6.CrossRef
55.
go back to reference Bradley D, Roth G. Adaptive Thresholding using the integral image. J Graphics Tools. 2007;12:13–21.CrossRef Bradley D, Roth G. Adaptive Thresholding using the integral image. J Graphics Tools. 2007;12:13–21.CrossRef
56.
57.
go back to reference Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast Cancer. N Engl J Med. 2018;379(2):111–21.PubMedPubMedCentralCrossRef Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy guided by a 21-gene expression assay in breast Cancer. N Engl J Med. 2018;379(2):111–21.PubMedPubMedCentralCrossRef
58.
go back to reference Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.PubMedCrossRef Pencina MJ, D'Agostino RB Sr, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.PubMedCrossRef
59.
go back to reference Uno H, Tian L, Cai T, Kohane I, S,, Wei LJ. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data Stat Med 2013;32:2430–2442. Uno H, Tian L, Cai T, Kohane I, S,, Wei LJ. A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data Stat Med 2013;32:2430–2442.
60.
go back to reference Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biom J. 2008;50(4):457–79.PubMedCrossRef Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biom J. 2008;50(4):457–79.PubMedCrossRef
61.
go back to reference Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F, Roselli M. Breast Cancer Prognosis Using a Machine Learning Approach. Cancers (Basel). 2019;11:3.CrossRef Ferroni P, Zanzotto FM, Riondino S, Scarpato N, Guadagni F, Roselli M. Breast Cancer Prognosis Using a Machine Learning Approach. Cancers (Basel). 2019;11:3.CrossRef
62.
go back to reference Hueman MT, Wang H, Yang CQ, Sheng L, Henson DE, Schwartz AM, et al. Creating prognostic systems for cancer patients: a demonstration using breast cancer. Cancer Med. 2018;7(8):3611–21.PubMedPubMedCentralCrossRef Hueman MT, Wang H, Yang CQ, Sheng L, Henson DE, Schwartz AM, et al. Creating prognostic systems for cancer patients: a demonstration using breast cancer. Cancer Med. 2018;7(8):3611–21.PubMedPubMedCentralCrossRef
63.
go back to reference Jaber MI, Song B, Taylor C, Vaske CJ, Benz SC, Rabizadeh S, et al. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast Cancer Res. 2020;22(1):12.PubMedPubMedCentralCrossRef Jaber MI, Song B, Taylor C, Vaske CJ, Benz SC, Rabizadeh S, et al. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. Breast Cancer Res. 2020;22(1):12.PubMedPubMedCentralCrossRef
64.
go back to reference Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.PubMedCrossRef Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.PubMedCrossRef
Metadata
Title
Intratumoral heterogeneity of second-harmonic generation scattering from tumor collagen and its effects on metastatic risk prediction
Authors
Danielle E. Desa
Robert L. Strawderman
Wencheng Wu
Robert L. Hill
Marcel Smid
J. W. M. Martens
Bradley M. Turner
Edward B. Brown
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07713-4

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine