Skip to main content
Top
Published in: Breast Cancer Research 1/2021

Open Access 01-12-2021 | Metastasis | Research article

Fluid flow exposure promotes epithelial-to-mesenchymal transition and adhesion of breast cancer cells to endothelial cells

Authors: Kenneth F. Fuh, Robert D. Shepherd, Jessica S. Withell, Brayden K. Kooistra, Kristina D. Rinker

Published in: Breast Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Mechanical interactions between tumor cells and microenvironments are frequent phenomena during breast cancer progression, however, it is not well understood how these interactions affect Epithelial-to-Mesenchymal Transition (EMT). EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.

Methods

MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in expression were quantified using microarrays, qPCR, immunocytochemistry, and western blots. Gene–gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Potential involvement of Smads was investigated using siRNA knockdown studies. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer, migrate and invade membrane pores was evaluated in flow and static adhesion experiments.

Results

Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs and MDA-MB-231 cells, suggesting progression towards an EMT phenotype. Flow-stimulated SNAI2 was abrogated with Smad3 siRNA. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with different subtypes of breast cancer. We also observed increased adhesion, migration and invasion of flow-stimulated breast cancer cells compared to unstimulated controls.

Conclusions

This study shows that fluid forces on the order of 1 Pa promote EMT and adhesion of breast cancer cells to an endothelial monolayer and identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.
Appendix
Available only for authorised users
Literature
2.
go back to reference Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedCrossRef Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.PubMedCrossRef
3.
go back to reference Excellence NI for C, Excellence NI for C. Improving outcomes for breast cancer. National Institute for Clinical Evidence;2002. Excellence NI for C, Excellence NI for C. Improving outcomes for breast cancer. National Institute for Clinical Evidence;2002.
4.
go back to reference Wang L, Li F, Sheng J, Wong ST. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles. BMC Genomics. 2015;16(Suppl 7):S6.PubMedPubMedCentralCrossRef Wang L, Li F, Sheng J, Wong ST. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles. BMC Genomics. 2015;16(Suppl 7):S6.PubMedPubMedCentralCrossRef
5.
go back to reference Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–22.PubMedPubMedCentralCrossRef Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–22.PubMedPubMedCentralCrossRef
6.
go back to reference Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3(March):1–11. Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3(March):1–11.
7.
go back to reference Koumoutsakos P, Pivkin I, Milde F. The fluid mechanics of cancer and its therapy. Annu Rev Fluid Mech. 2012;45(1):121005161233001. Koumoutsakos P, Pivkin I, Milde F. The fluid mechanics of cancer and its therapy. Annu Rev Fluid Mech. 2012;45(1):121005161233001.
8.
go back to reference Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9.PubMedCrossRef Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9.PubMedCrossRef
9.
10.
go back to reference Tchafa AM, Ta M, Reginato MJ, Shieh AC. EMT transition alters interstitial fluid flow-induced signaling in ERBB2-positive breast cancer cells. Mol Cancer Res. 2015;13:755–65.PubMedCrossRef Tchafa AM, Ta M, Reginato MJ, Shieh AC. EMT transition alters interstitial fluid flow-induced signaling in ERBB2-positive breast cancer cells. Mol Cancer Res. 2015;13:755–65.PubMedCrossRef
11.
go back to reference Lawler K, Foran E, O’Sullivan G, Long A, Kenny D. Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol. 2006;291(4):C668–77.PubMedCrossRef Lawler K, Foran E, O’Sullivan G, Long A, Kenny D. Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol. 2006;291(4):C668–77.PubMedCrossRef
12.
go back to reference Qazi H, Shi Z-D, Tarbell JM. Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLOS ONE. 2011;6(5):e20348.PubMedPubMedCentralCrossRef Qazi H, Shi Z-D, Tarbell JM. Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLOS ONE. 2011;6(5):e20348.PubMedPubMedCentralCrossRef
13.
go back to reference Mitchell MJ, King MR. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys. 2013;15(1):1–23.CrossRef Mitchell MJ, King MR. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors. New J Phys. 2013;15(1):1–23.CrossRef
14.
go back to reference Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA. 2013;110(22):1974–83.CrossRef Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA. 2013;110(22):1974–83.CrossRef
15.
go back to reference Shepherd RD, Kos SM, Rinker KD. Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2011;301(1):H98-107.PubMedPubMedCentralCrossRef Shepherd RD, Kos SM, Rinker KD. Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2011;301(1):H98-107.PubMedPubMedCentralCrossRef
16.
go back to reference Shepherd RD, Kos SM, Rinker KD. Long term shear stress leads to increased phosphorylation of multiple MAPK species in cultured human aortic endothelial cells. Biorheology. 2009;46(6):529–38.PubMedCrossRef Shepherd RD, Kos SM, Rinker KD. Long term shear stress leads to increased phosphorylation of multiple MAPK species in cultured human aortic endothelial cells. Biorheology. 2009;46(6):529–38.PubMedCrossRef
17.
go back to reference Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.PubMedCrossRef Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.PubMedCrossRef
18.
go back to reference Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74.PubMedCrossRef Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74.PubMedCrossRef
19.
go back to reference Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5–6):396–403.PubMedPubMedCentralCrossRef Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22(5–6):396–403.PubMedPubMedCentralCrossRef
20.
go back to reference Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9.PubMedCrossRef Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9.PubMedCrossRef
21.
go back to reference Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591–613.PubMedCrossRef Moreno-Bueno G, Peinado H, Molina P, Olmeda D, Cubillo E, Santos V, et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591–613.PubMedCrossRef
22.
go back to reference Shook D, Keller R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev. 2003;120(11):1351–83.PubMedCrossRef Shook D, Keller R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev. 2003;120(11):1351–83.PubMedCrossRef
23.
go back to reference Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.PubMedCrossRef Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.PubMedCrossRef
24.
go back to reference Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res. 2019;21(1):1–20.CrossRef Choi HY, Yang GM, Dayem AA, Saha SK, Kim K, Yoo Y, et al. Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Res. 2019;21(1):1–20.CrossRef
26.
go back to reference Reymond N, D’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13(12):858–70.PubMedCrossRef Reymond N, D’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13(12):858–70.PubMedCrossRef
27.
go back to reference Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol. 1999;147(1):89–103.PubMedCrossRef Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol. 1999;147(1):89–103.PubMedCrossRef
28.
29.
go back to reference Paschos KA, Canovas D, Bird NC. The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal. 2009;21(5):665–74.PubMedCrossRef Paschos KA, Canovas D, Bird NC. The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal. 2009;21(5):665–74.PubMedCrossRef
30.
go back to reference Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:1–10.CrossRef Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:1–10.CrossRef
31.
32.
go back to reference King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi A-B, Fodstad O, Jiang WG. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res. 2004;6(5):R478–87.PubMedPubMedCentralCrossRef King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi A-B, Fodstad O, Jiang WG. Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res. 2004;6(5):R478–87.PubMedPubMedCentralCrossRef
33.
go back to reference Carbotti G, Orengo AM, Mezzanzanica D, Bagnoli M, Brizzolara A, Emionite L, et al. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer J Int Cancer. 2013;132(11):2597–605.CrossRef Carbotti G, Orengo AM, Mezzanzanica D, Bagnoli M, Brizzolara A, Emionite L, et al. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer J Int Cancer. 2013;132(11):2597–605.CrossRef
34.
go back to reference Kulasingam V, Zheng Y, Soosaipillai A, Leon AE, Gion M, Diamandis EP. Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int J Cancer. 2009;125(1):9–14.PubMedPubMedCentralCrossRef Kulasingam V, Zheng Y, Soosaipillai A, Leon AE, Gion M, Diamandis EP. Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int J Cancer. 2009;125(1):9–14.PubMedPubMedCentralCrossRef
35.
go back to reference Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA. 2011;108(9):3725–30.PubMedPubMedCentralCrossRef Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA. 2011;108(9):3725–30.PubMedPubMedCentralCrossRef
36.
go back to reference Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res BCR. 2011;13(4):215.PubMedCrossRef Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res BCR. 2011;13(4):215.PubMedCrossRef
37.
38.
go back to reference Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics. 2018;15(2):131–52.PubMedPubMedCentralCrossRef Mueller C, Haymond A, Davis JB, Williams A, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics. 2018;15(2):131–52.PubMedPubMedCentralCrossRef
39.
go back to reference Eng A, McCormack V, Dos-Santos-Silva I. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: a systematic review and meta-analysis. PLOS Med. 2014;11(9):e1001720.PubMedPubMedCentralCrossRef Eng A, McCormack V, Dos-Santos-Silva I. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: a systematic review and meta-analysis. PLOS Med. 2014;11(9):e1001720.PubMedPubMedCentralCrossRef
40.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef
41.
go back to reference Tang Y, Herr G, Johnson W, Resnik E, Aho J. Induction and analysis of epithelial to mesenchymal transition. J Visual Exp JVE. 2013;78:1–9. Tang Y, Herr G, Johnson W, Resnik E, Aho J. Induction and analysis of epithelial to mesenchymal transition. J Visual Exp JVE. 2013;78:1–9.
42.
go back to reference McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13(9):1400–12.PubMedPubMedCentralCrossRef McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle. 2014;13(9):1400–12.PubMedPubMedCentralCrossRef
43.
go back to reference Sánchez A, Villa MCR de. A Tutorial review of microarray data analysis. Bioinformatics. 2008;1–55. Sánchez A, Villa MCR de. A Tutorial review of microarray data analysis. Bioinformatics. 2008;1–55.
44.
45.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide. Proc Natl Acad Sci. 2005;102:15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide. Proc Natl Acad Sci. 2005;102:15545–50.PubMedPubMedCentralCrossRef
46.
go back to reference Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape Web: an interactive web-based network browser. Bioinform (Oxford, England). 2010;26(18):2347–8. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. Cytoscape Web: an interactive web-based network browser. Bioinform (Oxford, England). 2010;26(18):2347–8.
47.
go back to reference Wang L, Khankhanian P, Baranzini SE, Mousavi P. iCTNet : A Cytoscape plugin to produce and analyze integrative complex traits networks. 2011;380. Wang L, Khankhanian P, Baranzini SE, Mousavi P. iCTNet : A Cytoscape plugin to produce and analyze integrative complex traits networks. 2011;380.
49.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
50.
51.
go back to reference Anders CK, Carey L. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2010;9:S73–81.CrossRef Anders CK, Carey L. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2010;9:S73–81.CrossRef
52.
go back to reference Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.PubMedCrossRef Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.PubMedCrossRef
53.
go back to reference Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, et al. Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Can Res. 2009;69(14):5743–51.CrossRef Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, et al. Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Can Res. 2009;69(14):5743–51.CrossRef
54.
go back to reference Piotrowski-Daspit AS, Tien J, Nelson CM. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Cambridge). 2016;8(3):319–31.CrossRef Piotrowski-Daspit AS, Tien J, Nelson CM. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Cambridge). 2016;8(3):319–31.CrossRef
55.
go back to reference le Du F, Eckhardt BL, Lim B, Litton JK, Moulder S, Meric-Bernstam F, et al. Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget. 2015;6(15):12890–908.PubMedPubMedCentralCrossRef le Du F, Eckhardt BL, Lim B, Litton JK, Moulder S, Meric-Bernstam F, et al. Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget. 2015;6(15):12890–908.PubMedPubMedCentralCrossRef
56.
go back to reference Blasi F, Sidenius N. The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.PubMedCrossRef Blasi F, Sidenius N. The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett. 2010;584(9):1923–30.PubMedCrossRef
58.
go back to reference Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLOS One. 2009;4(7):e6146.PubMedPubMedCentralCrossRef Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLOS One. 2009;4(7):e6146.PubMedPubMedCentralCrossRef
59.
go back to reference Pan M-R, Hou M-F, Ou-Yang F, Wu C-C, Chang S-J, Hung W-C, et al. FAK is required for tumor metastasis-related fluid microenvironment in triple-negative breast cancer. J Clin Med. 2019;8(1):38.PubMedCentralCrossRef Pan M-R, Hou M-F, Ou-Yang F, Wu C-C, Chang S-J, Hung W-C, et al. FAK is required for tumor metastasis-related fluid microenvironment in triple-negative breast cancer. J Clin Med. 2019;8(1):38.PubMedCentralCrossRef
60.
go back to reference Chen Y. Tumor Cell Invasion Assay. Bio-protocol. 2011;1:3–5. Chen Y. Tumor Cell Invasion Assay. Bio-protocol. 2011;1:3–5.
61.
go back to reference Lawler K, O’Sullivan G, Long A, Kenny D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci. 2009;100(6):1082–7.PubMedCrossRef Lawler K, O’Sullivan G, Long A, Kenny D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci. 2009;100(6):1082–7.PubMedCrossRef
62.
go back to reference Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, et al. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget. 2016;7(13):16227–47.PubMedPubMedCentralCrossRef Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, et al. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget. 2016;7(13):16227–47.PubMedPubMedCentralCrossRef
63.
go back to reference Lanz HL, Saleh A, Kramer B, Cairns J, Ng CP, Yu J, et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer. 2017;17(1):1–11.CrossRef Lanz HL, Saleh A, Kramer B, Cairns J, Ng CP, Yu J, et al. Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer. 2017;17(1):1–11.CrossRef
65.
go back to reference Li B, Shen W, Peng H, Li Y, Chen F, Zheng L, Jianhua Xu, Jia L. Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT. Onco Targets Therapy. 2019;12:3207–21.CrossRef Li B, Shen W, Peng H, Li Y, Chen F, Zheng L, Jianhua Xu, Jia L. Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT. Onco Targets Therapy. 2019;12:3207–21.CrossRef
67.
go back to reference Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99.PubMedCrossRef Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99.PubMedCrossRef
68.
go back to reference Moquet-Torcy G, Tolza C, Piechaczyk M, Jariel-Encontre I. Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Res. 2014;42(17):11011–24.PubMedPubMedCentralCrossRef Moquet-Torcy G, Tolza C, Piechaczyk M, Jariel-Encontre I. Transcriptional complexity and roles of Fra-1/AP-1 at the uPA/Plau locus in aggressive breast cancer. Nucleic Acids Res. 2014;42(17):11011–24.PubMedPubMedCentralCrossRef
69.
go back to reference Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell. 2001;12(10):2975–86.PubMedPubMedCentralCrossRef Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell. 2001;12(10):2975–86.PubMedPubMedCentralCrossRef
70.
go back to reference Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.PubMedCrossRef Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.PubMedCrossRef
71.
go back to reference Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997;17(4):439–44.PubMedCrossRef Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 1997;17(4):439–44.PubMedCrossRef
72.
go back to reference Lee YH, Albig AR, Regner M, Schiemann BJ, Schiemann WP. Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-?? in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis. 2008;29(12):2243–51.PubMedPubMedCentralCrossRef Lee YH, Albig AR, Regner M, Schiemann BJ, Schiemann WP. Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-?? in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis. 2008;29(12):2243–51.PubMedPubMedCentralCrossRef
73.
go back to reference Miles FL, Pruitt FL, van Golen KL, Cooper CR. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metas. 2008;25(4):305–24.CrossRef Miles FL, Pruitt FL, van Golen KL, Cooper CR. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metas. 2008;25(4):305–24.CrossRef
74.
go back to reference Baba H. Epithelial-mesenchymal transition expression profiles as a prognostic factor for disease-free survival in hepatocellular carcinoma: clinical significance of transforming growth factor-β signaling. Oncol Lett. 2012;8:149–54. Baba H. Epithelial-mesenchymal transition expression profiles as a prognostic factor for disease-free survival in hepatocellular carcinoma: clinical significance of transforming growth factor-β signaling. Oncol Lett. 2012;8:149–54.
75.
go back to reference Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428.PubMedPubMedCentralCrossRef Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428.PubMedPubMedCentralCrossRef
76.
go back to reference Fujiwara K, Ohuchida K, Sada M, Horioka K, Ulrich CD, Shindo K, et al. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells. PLOS ONE. 2014;9(9):e107247.PubMedPubMedCentralCrossRef Fujiwara K, Ohuchida K, Sada M, Horioka K, Ulrich CD, Shindo K, et al. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells. PLOS ONE. 2014;9(9):e107247.PubMedPubMedCentralCrossRef
77.
go back to reference Ishiguro F, Murakami H, Mizuno T, Fujii M, Kondo Y, Usami N, et al. Membranous expression of activated leukocyte cell adhesion molecule contributes to poor prognosis and malignant phenotypes of non-small-cell lung cancer. J Surg Res. 2012;179(1):1–9. Ishiguro F, Murakami H, Mizuno T, Fujii M, Kondo Y, Usami N, et al. Membranous expression of activated leukocyte cell adhesion molecule contributes to poor prognosis and malignant phenotypes of non-small-cell lung cancer. J Surg Res. 2012;179(1):1–9.
78.
go back to reference Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.PubMedCrossRef Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.PubMedCrossRef
79.
go back to reference Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A, et al. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Can Res. 2011;26(2):33437–46. Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A, et al. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Can Res. 2011;26(2):33437–46.
80.
go back to reference Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283(48):33437–46.PubMedPubMedCentralCrossRef Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem. 2008;283(48):33437–46.PubMedPubMedCentralCrossRef
81.
go back to reference Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.PubMedCrossRef Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.PubMedCrossRef
82.
go back to reference Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ. SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res. 2018;20:60.PubMedPubMedCentralCrossRef Alves CL, Elias D, Lyng MB, Bak M, Ditzel HJ. SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res. 2018;20:60.PubMedPubMedCentralCrossRef
83.
go back to reference Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 2006;174(2):175–83.PubMedPubMedCentralCrossRef Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 2006;174(2):175–83.PubMedPubMedCentralCrossRef
84.
go back to reference Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, et al. Deletion of Smad2 in Mouse Liver Reveals Novel Functions in Hepatocyte Growth and Differentiation. Mol Cell Biol. 2006;26(2):654–67.PubMedPubMedCentralCrossRef Ju W, Ogawa A, Heyer J, Nierhof D, Yu L, Kucherlapati R, et al. Deletion of Smad2 in Mouse Liver Reveals Novel Functions in Hepatocyte Growth and Differentiation. Mol Cell Biol. 2006;26(2):654–67.PubMedPubMedCentralCrossRef
Metadata
Title
Fluid flow exposure promotes epithelial-to-mesenchymal transition and adhesion of breast cancer cells to endothelial cells
Authors
Kenneth F. Fuh
Robert D. Shepherd
Jessica S. Withell
Brayden K. Kooistra
Kristina D. Rinker
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2021
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-021-01473-0

Other articles of this Issue 1/2021

Breast Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine