Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Metastasis | Research

Atovaquone inhibits colorectal cancer metastasis by regulating PDGFRβ/NF-κB signaling pathway

Authors: Bin Liu, Xin Zheng, Jiajun Li, Peng Yao, Peng Guo, Wei Liu, Gaoping Zhao

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Colorectal cancer is a common malignant tumour. Invasive growth and distant metastasis are the main characteristics of its malignant biological behaviour, and they are also the primary factors leading to death in colon cancer patients. Atovaquone is an antimalarial drug, and its anticancer effect has recently been demonstrated in several cancer models in vitro and in vivo, but it has not been examined in the treatment of colorectal cancer.

Methods

To elucidate the effect of atovaquone on colorectal cancer. We used RNA transcriptome sequencing, RT‒PCR and Western blot experiments to examine the expression of NF-κB (p-P65), EMT-related proteins and related inflammatory factors (IL1B, IL6, CCL20, CCL2, CXCL8, CXCL6, IL6ST, FAS, IL10 and IL1A). The effect of atovaquone on colorectal cancer metastasis was validated using an animal model of lung metastases. We further used transcriptome sequencing, the GCBI bioinformatics database and the STRING database to predict relevant target proteins. Furthermore, pathological sections were collected from relevant cases for immunohistochemical verification.

Results

This study showed that atovaquone could inhibit colorectal cancer metastasis and invasion in vivo and in vitro, inhibit the expression of E-cadherin protein, and promote the protein expression of N-cadherin, vimentin, ZEB1, Snail and Slug. Atovaquone could inhibit EMT by inhibiting NF-κB (p-P65) and related inflammatory factors. Further bioinformatics analysis and verification showed that PDGFRβ was one of the targets of atovaquone.

Conclusion

In summary, atovaquone can inhibit the expression of NF-κB (p-P65) and related inflammatory factors by inhibiting the protein expression of p-PDGFRβ, thereby inhibiting colorectal cancer metastasis. Atovaquone may be a promising drug for the treatment of colorectal cancer metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon Cancer. Gastroenterology. 2010;138(6):2101–2114e2105.CrossRefPubMed Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon Cancer. Gastroenterology. 2010;138(6):2101–2114e2105.CrossRefPubMed
2.
go back to reference Van Cutsem E, Nordlinger B, Cervantes A. Advanced Colorectal cancer: ESMO Clinical Practice guidelines for treatment. Ann Oncol. 2010;21(Suppl 5):v93–97.CrossRefPubMed Van Cutsem E, Nordlinger B, Cervantes A. Advanced Colorectal cancer: ESMO Clinical Practice guidelines for treatment. Ann Oncol. 2010;21(Suppl 5):v93–97.CrossRefPubMed
3.
go back to reference Madden RM, Pui CH, Hughes WT, Flynn PM, Leung W. Prophylaxis of Pneumocystis carinii Pneumonia with atovaquone in children with Leukemia. Cancer. 2007;109(8):1654–8.CrossRefPubMed Madden RM, Pui CH, Hughes WT, Flynn PM, Leung W. Prophylaxis of Pneumocystis carinii Pneumonia with atovaquone in children with Leukemia. Cancer. 2007;109(8):1654–8.CrossRefPubMed
4.
go back to reference Stickles AM, Smilkstein MJ, Morrisey JM, Li Y, Forquer IP, Kelly JX, Pou S, Winter RW, Nilsen A, Vaidya AB, et al. Atovaquone and ELQ-300 combination therapy as a Novel Dual-Site Cytochrome bc1 inhibition strategy for Malaria. Antimicrob Agents Chemother. 2016;60(8):4853–9.CrossRefPubMedPubMedCentral Stickles AM, Smilkstein MJ, Morrisey JM, Li Y, Forquer IP, Kelly JX, Pou S, Winter RW, Nilsen A, Vaidya AB, et al. Atovaquone and ELQ-300 combination therapy as a Novel Dual-Site Cytochrome bc1 inhibition strategy for Malaria. Antimicrob Agents Chemother. 2016;60(8):4853–9.CrossRefPubMedPubMedCentral
5.
go back to reference Lv Z, Yan X, Lu L, Su C, He Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J Bioenerg Biomembr. 2018;50(4):263–70.CrossRefPubMed Lv Z, Yan X, Lu L, Su C, He Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J Bioenerg Biomembr. 2018;50(4):263–70.CrossRefPubMed
6.
go back to reference Zhou J, Duan L, Chen H, Ren X, Zhang Z, Zhou F, Liu J, Pei D, Ding K. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents. Bioorg Med Chem Lett. 2009;19(17):5091–4.CrossRefPubMed Zhou J, Duan L, Chen H, Ren X, Zhang Z, Zhou F, Liu J, Pei D, Ding K. Atovaquone derivatives as potent cytotoxic and apoptosis inducing agents. Bioorg Med Chem Lett. 2009;19(17):5091–4.CrossRefPubMed
7.
go back to reference Ke F, Yu J, Chen W, Si X, Li X, Yang F, Liao Y, Zuo Z. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. Biochem Biophys Res Commun. 2018;504(2):374–9.CrossRefPubMed Ke F, Yu J, Chen W, Si X, Li X, Yang F, Liao Y, Zuo Z. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. Biochem Biophys Res Commun. 2018;504(2):374–9.CrossRefPubMed
8.
go back to reference Takabe H, Warnken ZN. A repurposed drug for Brain Cancer: enhanced atovaquone amorphous solid dispersion by combining a spontaneously emulsifying component with a polymer carrier. Pharmaceutics 2018, 10(2). Takabe H, Warnken ZN. A repurposed drug for Brain Cancer: enhanced atovaquone amorphous solid dispersion by combining a spontaneously emulsifying component with a polymer carrier. Pharmaceutics 2018, 10(2).
9.
go back to reference Tian S, Chen H, Tan W. Targeting mitochondrial respiration as a therapeutic strategy for Cervical cancer. Biochem Biophys Res Commun. 2018;499(4):1019–24.CrossRefPubMed Tian S, Chen H, Tan W. Targeting mitochondrial respiration as a therapeutic strategy for Cervical cancer. Biochem Biophys Res Commun. 2018;499(4):1019–24.CrossRefPubMed
10.
go back to reference Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and Disease. Cells Tissues Organs. 2007;185(1–3):7–19.CrossRefPubMed Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and Disease. Cells Tissues Organs. 2007;185(1–3):7–19.CrossRefPubMed
11.
go back to reference Inácio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcântara PS, Tokeshi F, Nascimento CM. Cancer as a Proinflammatory Environment: Metastasis and Cachexia. Mediators Inflamm 2015, 2015:791060. Inácio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcântara PS, Tokeshi F, Nascimento CM. Cancer as a Proinflammatory Environment: Metastasis and Cachexia. Mediators Inflamm 2015, 2015:791060.
12.
go back to reference Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33(Suppl 1):79–84.CrossRef Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33(Suppl 1):79–84.CrossRef
13.
go back to reference Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of angiogenesis in health and Disease. Curr Pharm Des. 2006;12(24):3101–15.CrossRefPubMed Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of angiogenesis in health and Disease. Curr Pharm Des. 2006;12(24):3101–15.CrossRefPubMed
14.
go back to reference St John MA. Inflammatory mediators drive Metastasis and drug resistance in head and neck squamous cell carcinoma. Laryngoscope. 2015;125(Suppl 3):1–11. St John MA. Inflammatory mediators drive Metastasis and drug resistance in head and neck squamous cell carcinoma. Laryngoscope. 2015;125(Suppl 3):1–11.
15.
go back to reference Ho EA, Piquette-Miller M. Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets. 2006;6(4):295–311.CrossRefPubMed Ho EA, Piquette-Miller M. Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets. 2006;6(4):295–311.CrossRefPubMed
16.
17.
go back to reference Zhou J, Zheng S, Liu T, Liu Q, Chen Y, Tan D, Ma R, Lu X. IL-1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial-mesenchymal transition and activating NF-κB signaling pathway. 2018, 119(8):7040–52. Zhou J, Zheng S, Liu T, Liu Q, Chen Y, Tan D, Ma R, Lu X. IL-1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial-mesenchymal transition and activating NF-κB signaling pathway. 2018, 119(8):7040–52.
18.
go back to reference Perez-Yepez EA, Ayala-Sumuano JT, Lezama R, Meza I. A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial-mesenchymal transition in Breast cancer cells. Cancer Lett. 2014;354(1):164–71.CrossRefPubMed Perez-Yepez EA, Ayala-Sumuano JT, Lezama R, Meza I. A novel β-catenin signaling pathway activated by IL-1β leads to the onset of epithelial-mesenchymal transition in Breast cancer cells. Cancer Lett. 2014;354(1):164–71.CrossRefPubMed
19.
go back to reference Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, et al. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human Breast cancer cells. Cancer Biol Ther. 2015;16(8):1220–30.CrossRefPubMedPubMedCentral Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, et al. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human Breast cancer cells. Cancer Biol Ther. 2015;16(8):1220–30.CrossRefPubMedPubMedCentral
20.
go back to reference Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote Metastasis of Lung cancer by inducing epithelial-mesenchymal transition. Oncol Lett. 2017;13(6):4657–60.CrossRefPubMedPubMedCentral Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote Metastasis of Lung cancer by inducing epithelial-mesenchymal transition. Oncol Lett. 2017;13(6):4657–60.CrossRefPubMedPubMedCentral
21.
go back to reference Yu L, Mu Y, Sa N, Wang H, Xu W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes Metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol Rep. 2014;31(1):321–7.CrossRefPubMed Yu L, Mu Y, Sa N, Wang H, Xu W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes Metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol Rep. 2014;31(1):321–7.CrossRefPubMed
22.
go back to reference Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.CrossRefPubMed Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32(8):1249–66.CrossRefPubMed
23.
go back to reference Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: methodology, application and prospective. Chin J Integr Med. 2020;26(1):72–80.CrossRefPubMed Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: methodology, application and prospective. Chin J Integr Med. 2020;26(1):72–80.CrossRefPubMed
24.
go back to reference Paulsson J, Ehnman M, Östman A. PDGF receptors in Tumor biology: prognostic and predictive potential. Future Oncol. 2014;10(9):1695–708.CrossRefPubMed Paulsson J, Ehnman M, Östman A. PDGF receptors in Tumor biology: prognostic and predictive potential. Future Oncol. 2014;10(9):1695–708.CrossRefPubMed
25.
go back to reference Ostman A, Heldin CH. PDGF receptors as targets in Tumor treatment. Adv Cancer Res. 2007;97:247–74.CrossRefPubMed Ostman A, Heldin CH. PDGF receptors as targets in Tumor treatment. Adv Cancer Res. 2007;97:247–74.CrossRefPubMed
26.
go back to reference Chang KK, Yoon C, Yi BC, Tap WD, Simon MC, Yoon SS. Platelet-derived growth factor receptor-α and -β promote cancer stem cell phenotypes in sarcomas. Oncogenesis. 2018;7(6):47.CrossRefPubMedPubMedCentral Chang KK, Yoon C, Yi BC, Tap WD, Simon MC, Yoon SS. Platelet-derived growth factor receptor-α and -β promote cancer stem cell phenotypes in sarcomas. Oncogenesis. 2018;7(6):47.CrossRefPubMedPubMedCentral
27.
go back to reference Valderrama-Treviño AI, Barrera-Mera B, Ceballos-Villalva JC, Montalvo-Javé EE. Hepatic Metastasis from Colorectal Cancer. Euroasian J hepato-gastroenterology. 2017;7(2):166–75.CrossRef Valderrama-Treviño AI, Barrera-Mera B, Ceballos-Villalva JC, Montalvo-Javé EE. Hepatic Metastasis from Colorectal Cancer. Euroasian J hepato-gastroenterology. 2017;7(2):166–75.CrossRef
28.
go back to reference Gao X, Liu X, Shan W, Liu Q, Wang C, Zheng J, Yao H, Tang R, Zheng J. Anti-malarial atovaquone exhibits anti-tumor effects by inducing DNA damage in hepatocellular carcinoma. Am J Cancer Res. 2018;8(9):1697–711.PubMedPubMedCentral Gao X, Liu X, Shan W, Liu Q, Wang C, Zheng J, Yao H, Tang R, Zheng J. Anti-malarial atovaquone exhibits anti-tumor effects by inducing DNA damage in hepatocellular carcinoma. Am J Cancer Res. 2018;8(9):1697–711.PubMedPubMedCentral
29.
go back to reference Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 2016;7(23):34084–99.CrossRefPubMedPubMedCentral Fiorillo M, Lamb R, Tanowitz HB, Mutti L, Krstic-Demonacos M, Cappello AR, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget. 2016;7(23):34084–99.CrossRefPubMedPubMedCentral
31.
go back to reference Lee JG, Ko MK, Kay EP. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res. 2012;95(1):35–9.CrossRefPubMed Lee JG, Ko MK, Kay EP. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp Eye Res. 2012;95(1):35–9.CrossRefPubMed
32.
go back to reference Miao JW, Liu LJ, Huang J. Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int J Oncol. 2014;45(1):165–76.CrossRefPubMed Miao JW, Liu LJ, Huang J. Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int J Oncol. 2014;45(1):165–76.CrossRefPubMed
33.
go back to reference Lu H, Chen B, Hong W, Liang Y, Bai Y. Transforming growth factor-β1 stimulates hedgehog signaling to promote epithelial-mesenchymal transition after kidney injury. FEBS J. 2016;283(20):3771–90.CrossRefPubMed Lu H, Chen B, Hong W, Liang Y, Bai Y. Transforming growth factor-β1 stimulates hedgehog signaling to promote epithelial-mesenchymal transition after kidney injury. FEBS J. 2016;283(20):3771–90.CrossRefPubMed
34.
go back to reference Techasen A, Namwat N, Loilome W, Bungkanjana P, Khuntikeo N, Puapairoj A, Jearanaikoon P, Saya H, Yongvanit P. Tumor necrosis factor-α (TNF-α) stimulates the epithelial-mesenchymal transition regulator snail in cholangiocarcinoma. Med Oncol (Northwood Lond Engl). 2012;29(5):3083–91.CrossRef Techasen A, Namwat N, Loilome W, Bungkanjana P, Khuntikeo N, Puapairoj A, Jearanaikoon P, Saya H, Yongvanit P. Tumor necrosis factor-α (TNF-α) stimulates the epithelial-mesenchymal transition regulator snail in cholangiocarcinoma. Med Oncol (Northwood Lond Engl). 2012;29(5):3083–91.CrossRef
35.
go back to reference Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the Tumor microenvironment. J Immunol Res. 2014;2014:149185.CrossRefPubMedPubMedCentral Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the Tumor microenvironment. J Immunol Res. 2014;2014:149185.CrossRefPubMedPubMedCentral
36.
go back to reference Pandi J, Arulprakasam A, Dhandapani R, Ramanathan S, Thangavelu S, Chinnappan J, Vidhya Rajalakshmi V, Alghamdi S, Shesha NT, Prasath S. Biomarkers for breast adenocarcinoma using in Silico approaches. Evid Based Complement Alternat Med. 2022;2022:7825272.CrossRefPubMedPubMedCentral Pandi J, Arulprakasam A, Dhandapani R, Ramanathan S, Thangavelu S, Chinnappan J, Vidhya Rajalakshmi V, Alghamdi S, Shesha NT, Prasath S. Biomarkers for breast adenocarcinoma using in Silico approaches. Evid Based Complement Alternat Med. 2022;2022:7825272.CrossRefPubMedPubMedCentral
37.
go back to reference Ajucarmelprecilla A, Pandi J, Dhandapani R, Ramanathan S, Chinnappan J, Paramasivam R, Thangavelu S, Mohammed Ghilan AK, Aljohani SAS, Oyouni AAA, Farasani A, Altayar MA, Althagafi HAE, Alzahrani OR, Durairaj K, Shrestha A. In Silico Identification of Hub Genes as Observing Biomarkers for Gastric Cancer Metastasis. Evid Based Complement Alternat Med 2022, 2022:6316158. Ajucarmelprecilla A, Pandi J, Dhandapani R, Ramanathan S, Chinnappan J, Paramasivam R, Thangavelu S, Mohammed Ghilan AK, Aljohani SAS, Oyouni AAA, Farasani A, Altayar MA, Althagafi HAE, Alzahrani OR, Durairaj K, Shrestha A. In Silico Identification of Hub Genes as Observing Biomarkers for Gastric Cancer Metastasis. Evid Based Complement Alternat Med 2022, 2022:6316158.
38.
go back to reference Liu ZC, Wang HS, Zhang G, Liu H, Chen XH, Zhang F, Chen DY, Cai SH, Du J. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of Prostate cancer cells. Biochim Biophys Acta. 2014;1840(10):3096–105.CrossRefPubMed Liu ZC, Wang HS, Zhang G, Liu H, Chen XH, Zhang F, Chen DY, Cai SH, Du J. AKT/GSK-3β regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of Prostate cancer cells. Biochim Biophys Acta. 2014;1840(10):3096–105.CrossRefPubMed
39.
go back to reference Hu L, Lau SH, Tzang CH, Wen JM, Wang W, Xie D, Huang M, Wang Y, Wu MC, Huang JF, et al. Association of Vimentin overexpression and hepatocellular carcinoma Metastasis. Oncogene. 2004;23(1):298–302.CrossRefPubMed Hu L, Lau SH, Tzang CH, Wen JM, Wang W, Xie D, Huang M, Wang Y, Wu MC, Huang JF, et al. Association of Vimentin overexpression and hepatocellular carcinoma Metastasis. Oncogene. 2004;23(1):298–302.CrossRefPubMed
40.
go back to reference Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JH, Bussink J. Expression of E-cadherin and vimentin correlates with Metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol. 2011;99(3):344–8.CrossRefPubMed Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JH, Bussink J. Expression of E-cadherin and vimentin correlates with Metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol. 2011;99(3):344–8.CrossRefPubMed
41.
go back to reference Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.CrossRefPubMed Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.CrossRefPubMed
Metadata
Title
Atovaquone inhibits colorectal cancer metastasis by regulating PDGFRβ/NF-κB signaling pathway
Authors
Bin Liu
Xin Zheng
Jiajun Li
Peng Yao
Peng Guo
Wei Liu
Gaoping Zhao
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11585-9

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine