Skip to main content
Top
Published in: Cancer Microenvironment 1/2008

Open Access 01-12-2008 | Review Paper

Metastasis Suppressors and the Tumor Microenvironment

Authors: Thomas M. Bodenstine, Danny R. Welch

Published in: Cancer Microenvironment | Issue 1/2008

Login to get access

Abstract

The most dangerous attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and extracellular molecules. This brief review explores how a new class of molecules – metastasis suppressors – regulate tumor cell–microenvironmental interactions. Data are presented which demonstrate that metastasis suppressors act at multiple steps of the metastatic cascade. A brief discussion for how metastasis suppressor regulation of cellular interactions might be exploited is presented.
Literature
1.
go back to reference Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904PubMed Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904PubMed
2.
go back to reference Friedl P, Wolf K (2003) Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMed Friedl P, Wolf K (2003) Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMed
3.
go back to reference Weiss L, Orr FW, Honn KW (1989) Interactions between cancer cells and the microvasculature: A rate regulator for metastasis. Clin Exp Metastasis 7:127–167PubMed Weiss L, Orr FW, Honn KW (1989) Interactions between cancer cells and the microvasculature: A rate regulator for metastasis. Clin Exp Metastasis 7:127–167PubMed
5.
go back to reference Rennebeck G, Martelli M, Kyprianou N (2005) Anoikis and survival connections in the tumor microenvironment: Is there a role in prostate cancer metastasis? Cancer Res 65:11230–11235PubMed Rennebeck G, Martelli M, Kyprianou N (2005) Anoikis and survival connections in the tumor microenvironment: Is there a role in prostate cancer metastasis? Cancer Res 65:11230–11235PubMed
6.
go back to reference Wang SL, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633PubMed Wang SL, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633PubMed
7.
go back to reference Fidler IJ (1974) Immune stimulation-inhibition of experimental cancer metastasis. Cancer Res 34:491–498PubMed Fidler IJ (1974) Immune stimulation-inhibition of experimental cancer metastasis. Cancer Res 34:491–498PubMed
8.
go back to reference Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: Implications for cell survival and anticancer strategies. Biochim Biophys Acta Rev Cancer 1775:163–180 Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: Implications for cell survival and anticancer strategies. Biochim Biophys Acta Rev Cancer 1775:163–180
9.
go back to reference Cavallaro U, Christofori G (2001) Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta Rev Cancer 1552:39–45 Cavallaro U, Christofori G (2001) Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta Rev Cancer 1552:39–45
10.
go back to reference Pauli BU, Augustin-Voss HG, El-Sabban ME et al (1990) Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9:175–189PubMed Pauli BU, Augustin-Voss HG, El-Sabban ME et al (1990) Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9:175–189PubMed
11.
go back to reference Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMed Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMed
12.
go back to reference Hart IR (1982) “Seed and soil” revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev 1:5–16PubMed Hart IR (1982) “Seed and soil” revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev 1:5–16PubMed
13.
go back to reference Ruffini PA, Morandi P, Cabioglu N et al (2007) Manipulating the chemokine–chemokine receptor network to treat cancer. Cancer 109:2392–2404PubMed Ruffini PA, Morandi P, Cabioglu N et al (2007) Manipulating the chemokine–chemokine receptor network to treat cancer. Cancer 109:2392–2404PubMed
14.
go back to reference Naumov GN, MacDonald IC, Chambers AF et al (2001) Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol 11:271–276PubMed Naumov GN, MacDonald IC, Chambers AF et al (2001) Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol 11:271–276PubMed
15.
go back to reference Al Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102PubMed Al Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102PubMed
16.
go back to reference Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5:1744–1750PubMed Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5:1744–1750PubMed
17.
go back to reference Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMed Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMed
18.
go back to reference Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757PubMed Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757PubMed
19.
go back to reference Welch DR (2007) Do we need to redefine a cancer metastasis and staging definitions? Breast Disease 26:3–12 Welch DR (2007) Do we need to redefine a cancer metastasis and staging definitions? Breast Disease 26:3–12
20.
go back to reference Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270PubMed Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270PubMed
21.
go back to reference Vaidya KS, Welch DR (2007) Metastasis suppressors and their roles in breast carcinoma. J Mamm Gland Biol Neopl 12:175–190 Vaidya KS, Welch DR (2007) Metastasis suppressors and their roles in breast carcinoma. J Mamm Gland Biol Neopl 12:175–190
22.
go back to reference Rinker-Schaeffer CW, O’Keefe JP, Welch DR et al (2006) Metastasis suppressor proteins: Discovery, Molecular mechanisms and Clinical Application. Clin Cancer Res 12:3382–3389 Rinker-Schaeffer CW, O’Keefe JP, Welch DR et al (2006) Metastasis suppressor proteins: Discovery, Molecular mechanisms and Clinical Application. Clin Cancer Res 12:3382–3389
23.
go back to reference Guarino M, Rubino B, Ballabio G (2007) The role of epithelial–mesenchymal transition in cancer pathology. Pathology 39:305–318PubMed Guarino M, Rubino B, Ballabio G (2007) The role of epithelial–mesenchymal transition in cancer pathology. Pathology 39:305–318PubMed
24.
go back to reference Graff JR, Gabrielson E, Fujii H et al (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275:2727–2732PubMed Graff JR, Gabrielson E, Fujii H et al (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275:2727–2732PubMed
25.
go back to reference Graff JR, Greenberg VE, Herman JG et al (1998) Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res 58:2063–2066PubMed Graff JR, Greenberg VE, Herman JG et al (1998) Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res 58:2063–2066PubMed
26.
go back to reference Hugo H, Ackland ML, Blick T et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMed Hugo H, Ackland ML, Blick T et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMed
27.
go back to reference Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474PubMed Potter JD (2007) Morphogens, morphostats, microarchitecture and malignancy. Nat Rev Cancer 7:464–474PubMed
28.
go back to reference Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMed Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720PubMed
29.
go back to reference Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMed Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMed
30.
go back to reference Foty RA, Steinberg MS(2004) Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol 48:397–409PubMed Foty RA, Steinberg MS(2004) Cadherin-mediated cell–cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol 48:397–409PubMed
31.
go back to reference Kashima T, Nakamura K, Kawaguchi J et al (2003) Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer 104:147–154PubMed Kashima T, Nakamura K, Kawaguchi J et al (2003) Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer 104:147–154PubMed
32.
go back to reference Puisieux A, Valsesia-Wittmann S, Ansieau S (2006) A twist for survival and cancer progression. Br J Cancer 94:13–17PubMed Puisieux A, Valsesia-Wittmann S, Ansieau S (2006) A twist for survival and cancer progression. Br J Cancer 94:13–17PubMed
33.
go back to reference Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552PubMed Yang J, Mani SA, Weinberg RA (2006) Exploring a new twist on tumor metastasis. Cancer Res 66:4549–4552PubMed
34.
go back to reference Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23:97–105PubMed Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23:97–105PubMed
35.
go back to reference Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326PubMed Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326PubMed
36.
go back to reference Tarin D (2005) The fallacy of epithelial mesenchymal transition in neoplasia Cancer Res 65: 5996–6000PubMed Tarin D (2005) The fallacy of epithelial mesenchymal transition in neoplasia Cancer Res 65: 5996–6000PubMed
37.
go back to reference Tarin D (2005) Carcinoma invasion and metastasis: A role for epithelial–mesenchymal transition? Response. Cancer Res 65:5995–5995 Tarin D (2005) Carcinoma invasion and metastasis: A role for epithelial–mesenchymal transition? Response. Cancer Res 65:5995–5995
38.
go back to reference Lin X, Tombler E, Nelson PJ et al (1996) A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J Biol Chem 271:28430–28438PubMed Lin X, Tombler E, Nelson PJ et al (1996) A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J Biol Chem 271:28430–28438PubMed
39.
go back to reference Gelman IH, Lee K, Tombler E et al (1998) Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS. Cell Motil Cytoskelet 41:1–17 Gelman IH, Lee K, Tombler E et al (1998) Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS. Cell Motil Cytoskelet 41:1–17
40.
go back to reference Xia W, Unger P, Miller L et al (2001) The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res 61:5644–5651PubMed Xia W, Unger P, Miller L et al (2001) The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res 61:5644–5651PubMed
41.
go back to reference Lin X, Nelson P, Gelman IH (2000) SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G(1)–>S progression by controlling the expression and cellular compartmentalization of cyclin D. Mol Cell Biol 20:7259–7272PubMed Lin X, Nelson P, Gelman IH (2000) SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G(1)–>S progression by controlling the expression and cellular compartmentalization of cyclin D. Mol Cell Biol 20:7259–7272PubMed
42.
go back to reference Xia W, Gelman IH (2002) Mitogen-induced, FAK-dependent tyrosine phosphorylation of the SSeCKS scaffolding protein. Exp Cell Res 277:139–151PubMed Xia W, Gelman IH (2002) Mitogen-induced, FAK-dependent tyrosine phosphorylation of the SSeCKS scaffolding protein. Exp Cell Res 277:139–151PubMed
43.
go back to reference Steeg PS, Bevilacqua G, Kopper L et al (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204PubMed Steeg PS, Bevilacqua G, Kopper L et al (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204PubMed
44.
go back to reference Pozzatti R, Muschel RJ, Williams J et al (1986) Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232:223–227PubMed Pozzatti R, Muschel RJ, Williams J et al (1986) Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 232:223–227PubMed
45.
go back to reference Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembranes 32:301–308 Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembranes 32:301–308
46.
go back to reference Freije JM, MacDonald NJ, Steeg PS (1998) Nm23 and tumour metastasis: basic and translational advances. Biochem Soc Symp 63:261–271PubMed Freije JM, MacDonald NJ, Steeg PS (1998) Nm23 and tumour metastasis: basic and translational advances. Biochem Soc Symp 63:261–271PubMed
47.
48.
go back to reference Hailat N, Keim DR, Melhem RF et al (1991) High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J Clin Invest 88:341–345PubMed Hailat N, Keim DR, Melhem RF et al (1991) High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification. J Clin Invest 88:341–345PubMed
49.
go back to reference Fournier HN, Dupé-Manet S, Bouvard D et al (2002) Integrin cytoplasmic domain-associated protein 1α (ICAP-1α) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem 277:20895–20902PubMed Fournier HN, Dupé-Manet S, Bouvard D et al (2002) Integrin cytoplasmic domain-associated protein 1α (ICAP-1α) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem 277:20895–20902PubMed
50.
go back to reference Tee YT, Chen GD, Lin LY et al (2006) Nm23-H1: a metastasis-associated gene. Taiwan J Obstet Gynecol 45:107–113PubMed Tee YT, Chen GD, Lin LY et al (2006) Nm23-H1: a metastasis-associated gene. Taiwan J Obstet Gynecol 45:107–113PubMed
51.
go back to reference Otsuki Y, Tanaka M, Yoshii S et al (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci 98:4385–4390PubMed Otsuki Y, Tanaka M, Yoshii S et al (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci 98:4385–4390PubMed
52.
go back to reference Kuppers DA, Lan K, Knight JS et al (2005) Regulation of matrix metalloproteinase 9 expression by Epstein-Barr virus nuclear antigen 3C and the suppressor of metastasis Nm23-H1. J Virol 79:9714–9724PubMed Kuppers DA, Lan K, Knight JS et al (2005) Regulation of matrix metalloproteinase 9 expression by Epstein-Barr virus nuclear antigen 3C and the suppressor of metastasis Nm23-H1. J Virol 79:9714–9724PubMed
53.
go back to reference Che G, Chen J, Liu L et al (2006) Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981. Neoplasma 53:530–537PubMed Che G, Chen J, Liu L et al (2006) Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981. Neoplasma 53:530–537PubMed
54.
go back to reference Horak CE, Lee JH, Elkahloun AG et al (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67:7238–7246PubMed Horak CE, Lee JH, Elkahloun AG et al (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67:7238–7246PubMed
55.
go back to reference Kishi J, Tanaka R, Koiwai O et al (1994) Gelatinases and metalloproteinase inhibitor secreted by murine colonic carcinoma cells with differing metastatic potential. Cell Biol Int 18:165–170PubMed Kishi J, Tanaka R, Koiwai O et al (1994) Gelatinases and metalloproteinase inhibitor secreted by murine colonic carcinoma cells with differing metastatic potential. Cell Biol Int 18:165–170PubMed
56.
go back to reference Li H, Fang W, Shi Z (1997) Effects of TIMP-2 gene transfection on biological behaviors of a metastatic human lung carcinoma cell line. Zhonghua Yi Xue Za Zhi 77:652–656PubMed Li H, Fang W, Shi Z (1997) Effects of TIMP-2 gene transfection on biological behaviors of a metastatic human lung carcinoma cell line. Zhonghua Yi Xue Za Zhi 77:652–656PubMed
57.
go back to reference Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808PubMed Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808PubMed
58.
go back to reference Takahashi C, Sheng Z, Horan TP et al (1998) Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci 95:13221–13226PubMed Takahashi C, Sheng Z, Horan TP et al (1998) Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci 95:13221–13226PubMed
59.
go back to reference Noda M, Oh J, Takahashi R et al (2003) RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 22:167–175PubMed Noda M, Oh J, Takahashi R et al (2003) RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 22:167–175PubMed
60.
go back to reference Correa TCS, Brohem CA, Winnischofer SMB et al (2006) Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J Cell Biochem 99:156–167PubMed Correa TCS, Brohem CA, Winnischofer SMB et al (2006) Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J Cell Biochem 99:156–167PubMed
61.
go back to reference Span PN, Sweep CGJF, Manders P et al (2003) Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs – A prognostic marker for good clinical outcome in human breast carcinoma. Cancer 97:2710–2715PubMed Span PN, Sweep CGJF, Manders P et al (2003) Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs – A prognostic marker for good clinical outcome in human breast carcinoma. Cancer 97:2710–2715PubMed
62.
go back to reference Oh J, Seo DW, Diaz T et al (2004) Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 64:9062–9069PubMed Oh J, Seo DW, Diaz T et al (2004) Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 64:9062–9069PubMed
63.
go back to reference Noda M, Takahashi C (2007) Recklessness as a hallmark of aggressive cancer. Cancer Sci 98:1659–1665PubMed Noda M, Takahashi C (2007) Recklessness as a hallmark of aggressive cancer. Cancer Sci 98:1659–1665PubMed
64.
go back to reference Chang HC, Cho CY, Hung WC (2006) Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 66:8413–8420PubMed Chang HC, Cho CY, Hung WC (2006) Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 66:8413–8420PubMed
65.
go back to reference Chang HC, Liu LT, Hung WC (2004) Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 16:675–679PubMed Chang HC, Liu LT, Hung WC (2004) Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 16:675–679PubMed
66.
go back to reference Liu LT, Chang HC, Chiang LC et al (2003) Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res 63:3069–3072PubMed Liu LT, Chang HC, Chiang LC et al (2003) Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res 63:3069–3072PubMed
67.
go back to reference Oh J, Takahashi R, Kondo S et al (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800PubMed Oh J, Takahashi R, Kondo S et al (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800PubMed
68.
go back to reference Li SL, Gao DL, Zhao ZH et al (2007) Correlation of matrix metalloproteinase suppressor genes RECK, VEGF, and CD105 with angiogenesis and biological behavior in esophageal squamous cell carcinoma. World J Gastroenterol 13:6076–6081PubMed Li SL, Gao DL, Zhao ZH et al (2007) Correlation of matrix metalloproteinase suppressor genes RECK, VEGF, and CD105 with angiogenesis and biological behavior in esophageal squamous cell carcinoma. World J Gastroenterol 13:6076–6081PubMed
69.
go back to reference Dong JT, Lamb PW, Rinker-Schaeffer CW et al (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMed Dong JT, Lamb PW, Rinker-Schaeffer CW et al (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMed
70.
go back to reference Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194PubMed Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194PubMed
71.
go back to reference Kauffman EC, Robinson VL, Stadler WM et al (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169:1122–1133PubMed Kauffman EC, Robinson VL, Stadler WM et al (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169:1122–1133PubMed
72.
go back to reference Jee BK, Park KM, Surendran S et al (2006) KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line. Biochem Biophys Res Commun 342:655–661PubMed Jee BK, Park KM, Surendran S et al (2006) KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line. Biochem Biophys Res Commun 342:655–661PubMed
73.
go back to reference Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMed Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938PubMed
74.
go back to reference Seraj MJ, Samant RS, Verderame MF et al (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed Seraj MJ, Samant RS, Verderame MF et al (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769PubMed
75.
go back to reference Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMed Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMed
76.
go back to reference Zhang S, Lin QD, DI W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMed Zhang S, Lin QD, DI W (2006) Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int J Gynecol Cancer 16:522–531PubMed
77.
go back to reference Lombardi G, Di Cristofano C, Capodanno A et al (2006) High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer 120:1169–1178 Lombardi G, Di Cristofano C, Capodanno A et al (2006) High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer 120:1169–1178
78.
go back to reference Zhang Z, Yamashita H, Toyama T et al (2006) Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12:6410–6414PubMed Zhang Z, Yamashita H, Toyama T et al (2006) Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12:6410–6414PubMed
79.
go back to reference Ohta S, Lai EW, Pang ALY et al (2005) Downregulation of metastasis suppressor genes in malignant pheochromocytoma. Int J Cancer 114:139–143PubMed Ohta S, Lai EW, Pang ALY et al (2005) Downregulation of metastasis suppressor genes in malignant pheochromocytoma. Int J Cancer 114:139–143PubMed
80.
go back to reference Stark AM, Tongers K, Maass N et al (2004) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMed Stark AM, Tongers K, Maass N et al (2004) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMed
81.
go back to reference Kelly LM, Buggy Y, Hill A et al (2005) Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: lack of correlation with metastasis to axillary lymph nodes. Tumor Biol 26:213–216 Kelly LM, Buggy Y, Hill A et al (2005) Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: lack of correlation with metastasis to axillary lymph nodes. Tumor Biol 26:213–216
82.
go back to reference Hicks DG, Yoder BJ, Short S et al (2006) Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clin Cancer Res 12:6702–6708PubMed Hicks DG, Yoder BJ, Short S et al (2006) Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clin Cancer Res 12:6702–6708PubMed
83.
go back to reference Hurst DR, Mehta A, Moore BP et al (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435PubMed Hurst DR, Mehta A, Moore BP et al (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435PubMed
84.
go back to reference Meehan WJ, Samant RS, Hopper JE et al (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569PubMed Meehan WJ, Samant RS, Hopper JE et al (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569PubMed
85.
go back to reference Champine PJ, Michaelson J, Weimer B et al (2007) Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clin Exp Metastasis 24:551–565PubMed Champine PJ, Michaelson J, Weimer B et al (2007) Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clin Exp Metastasis 24:551–565PubMed
86.
go back to reference Liu Y, Smith PW, Jones DR (2006) Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26:8683–8696PubMed Liu Y, Smith PW, Jones DR (2006) Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26:8683–8696PubMed
87.
go back to reference Phadke PA, Vaidya KS, Nash KT et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol (in press) Phadke PA, Vaidya KS, Nash KT et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol (in press)
88.
go back to reference Simon AM (1999) Gap junctions: more roles and new structural data. Trends Cell Biol 9:169–170PubMed Simon AM (1999) Gap junctions: more roles and new structural data. Trends Cell Biol 9:169–170PubMed
89.
go back to reference Samant RS, Seraj MJ, Saunders MM et al (2001) Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 18:683–693 Samant RS, Seraj MJ, Saunders MM et al (2001) Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 18:683–693
90.
go back to reference Saunders MM, Seraj MJ, Li ZY et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767PubMed Saunders MM, Seraj MJ, Li ZY et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767PubMed
91.
go back to reference Kapoor P, Saunders MM, Li Z et al (2004) Breast cancer metastatic potential: Correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111:693–697PubMed Kapoor P, Saunders MM, Li Z et al (2004) Breast cancer metastatic potential: Correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111:693–697PubMed
92.
go back to reference Rinker-Schaeffer CW, Hawkins AL, Ru N et al (1994) Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11. Cancer Res 54:6249–6256PubMed Rinker-Schaeffer CW, Hawkins AL, Ru N et al (1994) Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11. Cancer Res 54:6249–6256PubMed
93.
go back to reference Chekmareva MA, Hollowell CP, Smith RC et al (1997) Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate 33:271–280PubMed Chekmareva MA, Hollowell CP, Smith RC et al (1997) Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate 33:271–280PubMed
94.
go back to reference Yoshida BA, Dubauskas Z, Chekmareva MA et al (1999) Identification and characterization of candidate prostate cancer metastasis-suppressor genes encoded on human chromosome 17. Cancer Res 59:5483–5487PubMed Yoshida BA, Dubauskas Z, Chekmareva MA et al (1999) Identification and characterization of candidate prostate cancer metastasis-suppressor genes encoded on human chromosome 17. Cancer Res 59:5483–5487PubMed
95.
go back to reference Yoshida BA, Dubauskas Z, Chekmareva MA et al (1999) Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 59:5483–5487PubMed Yoshida BA, Dubauskas Z, Chekmareva MA et al (1999) Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 59:5483–5487PubMed
96.
go back to reference Kim HL, Van der Griend DJ, Yang X et al (2001) Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res 61:2833–2837PubMed Kim HL, Van der Griend DJ, Yang X et al (2001) Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res 61:2833–2837PubMed
97.
go back to reference Yamada SD, Hickson JA, Hrobowski Y et al (2002) Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62:6717–6723PubMed Yamada SD, Hickson JA, Hrobowski Y et al (2002) Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62:6717–6723PubMed
98.
go back to reference Hickson JA, Huo D, Vander Griend DJ et al (2006) The p38 Kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270PubMed Hickson JA, Huo D, Vander Griend DJ et al (2006) The p38 Kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270PubMed
99.
go back to reference Vander Griend DJ, Kocherginsky M, Hickson JA et al (2005) Suppression of metastatic colonization by the context-dependent activation of the c-jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65:10984–10991PubMed Vander Griend DJ, Kocherginsky M, Hickson JA et al (2005) Suppression of metastatic colonization by the context-dependent activation of the c-jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65:10984–10991PubMed
100.
go back to reference Vander Griend DJ, Rinker-Schaeffer CW (2004) A new look at an old problem: the survival and organ-specific growth of metastases. Sci STKE 2004:216pe3PubMed Vander Griend DJ, Rinker-Schaeffer CW (2004) A new look at an old problem: the survival and organ-specific growth of metastases. Sci STKE 2004:216pe3PubMed
101.
go back to reference Aguirre-Ghiso JA (2006) The problem of cancer dormancy – understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5:1740–1743PubMed Aguirre-Ghiso JA (2006) The problem of cancer dormancy – understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5:1740–1743PubMed
102.
go back to reference Aguirre-Ghiso JA, Estrada Y, Liu D et al (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695PubMed Aguirre-Ghiso JA, Estrada Y, Liu D et al (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695PubMed
103.
go back to reference Lee J-H, Miele ME, Hicks DJ et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737PubMed Lee J-H, Miele ME, Hicks DJ et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88:1731–1737PubMed
104.
go back to reference Nash KT, Welch DR (2006) The KISS1 metastasis suppressor: mechanistic insights and clinical utility. Front Biosci 11:647–659PubMed Nash KT, Welch DR (2006) The KISS1 metastasis suppressor: mechanistic insights and clinical utility. Front Biosci 11:647–659PubMed
105.
go back to reference Nash KT, Phadke PA, Navenot J-M et al (2007) KISS1 metastasis suppressor secretion, multiple organ metastasis suppression, and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321PubMed Nash KT, Phadke PA, Navenot J-M et al (2007) KISS1 metastasis suppressor secretion, multiple organ metastasis suppression, and maintenance of tumor dormancy. J Natl Cancer Inst 99:309–321PubMed
106.
go back to reference Kotani M, Detheux M, Vandenbogaerde A et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMed Kotani M, Detheux M, Vandenbogaerde A et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMed
107.
go back to reference Muir AI, Chamberlain L, Elshourbagy NA et al (2001) AXOR12: A novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975PubMed Muir AI, Chamberlain L, Elshourbagy NA et al (2001) AXOR12: A novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975PubMed
108.
go back to reference Ohtaki T, Shintani Y, Honda S et al (2001) Metastasis suppressor gene KiSS1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMed Ohtaki T, Shintani Y, Honda S et al (2001) Metastasis suppressor gene KiSS1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMed
Metadata
Title
Metastasis Suppressors and the Tumor Microenvironment
Authors
Thomas M. Bodenstine
Danny R. Welch
Publication date
01-12-2008
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 1/2008
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-008-0001-8

Other articles of this Issue 1/2008

Cancer Microenvironment 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine