Skip to main content
Top
Published in: Osteoporosis International 5/2011

01-05-2011 | Original Article

Metacarpal thickness, width, length and medullary diameter in children—reference curves from the First Zürich Longitudinal Study

Authors: D. D. Martin, C. Heckmann, O. G. Jenni, M. B. Ranke, G. Binder, H. H. Thodberg

Published in: Osteoporosis International | Issue 5/2011

Login to get access

Abstract

Summary

Metacarpal thickness (T), width (W), length (L) and medullary diameter (M) were measured in 3,121 X-rays from 231 healthy Caucasian children aged 3 to 19 years and analysed for bone age, age, height, weight and gender-related characteristics, showing highly differentiated growth patterns with prepubertal dips. Reference data for the four metacarpal measures are presented.

Introduction

The aim of the study was to create and explore a reference database for metacarpal T, W, L and M in children.

Methods

Three thousand one hundred twenty-one left-hand X-rays (1,661 from boys) from 231 healthy Caucasian subjects (119 boys) aged 3 to 19 years were analysed by BoneXpert, a programme for automatic analysis of hand X-rays and bone age (BA; in years).

Results

In boys, growth of T, W and L shows a prepubertal decrease from BA 7 to 13 and then accelerates again. In girls, the same is seen only for T starting from BA 8 to 11, whereas W and L grow at a declining rate. M shows steady growth until BA 10.5 in girls and BA 13.5 in boys and then grows smaller in both. W is greater in boys from BA 6 onwards, while L is greater in girls from BA 9 to 13 and T from BA 11 to 14. BA is reflected best by L until start of puberty and by T and L thereafter.

Conclusion

T, W, L and M show highly differentiated growth patterns. These reference data provide a basis for further research into skeletal development and the management of hormone therapies in children.
Literature
1.
go back to reference Boettcher J, Pfeil A, Rosholm A, Petrovitch A, Seidl BE, Malich A et al (2005) Digital X-ray radiogrammetry combined with semiautomated analysis of joint space widths as a new diagnostic approach in rheumatoid arthritis: a cross-sectional and longitudinal study. Arthritis Rheum 52:3850–3859CrossRef Boettcher J, Pfeil A, Rosholm A, Petrovitch A, Seidl BE, Malich A et al (2005) Digital X-ray radiogrammetry combined with semiautomated analysis of joint space widths as a new diagnostic approach in rheumatoid arthritis: a cross-sectional and longitudinal study. Arthritis Rheum 52:3850–3859CrossRef
2.
go back to reference Mentzel HJ, Blume J, Boettcher J, Lehmann G, Tuchscherer D, Pfeil A et al (2006) The potential of digital X-ray radiogrammetry (DXR) in the assessment of osteopenia in children with chronic inflammatory bowel disease. Pediatr Radiol 36:415–420PubMedCrossRef Mentzel HJ, Blume J, Boettcher J, Lehmann G, Tuchscherer D, Pfeil A et al (2006) The potential of digital X-ray radiogrammetry (DXR) in the assessment of osteopenia in children with chronic inflammatory bowel disease. Pediatr Radiol 36:415–420PubMedCrossRef
3.
go back to reference van Rijn RR, Boot A, Wittenberg R, van der Sluis IM, van den Heuvel-Eibrink M, Lequin MH et al (2006) Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency. Pediatr Radiol 36:227–232PubMedCrossRef van Rijn RR, Boot A, Wittenberg R, van der Sluis IM, van den Heuvel-Eibrink M, Lequin MH et al (2006) Direct X-ray radiogrammetry versus dual-energy X-ray absorptiometry: assessment of bone density in children treated for acute lymphoblastic leukaemia and growth hormone deficiency. Pediatr Radiol 36:227–232PubMedCrossRef
5.
go back to reference Bonnard GD (1968) Cortical thickness and diaphysial diameter of the metacarpal bones from the age of three months to eleven years. Helv Paediatr Acta 23:445–463PubMed Bonnard GD (1968) Cortical thickness and diaphysial diameter of the metacarpal bones from the age of three months to eleven years. Helv Paediatr Acta 23:445–463PubMed
6.
go back to reference Prader A, Largo RH, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich Longitudinal Study of growth and development. Helv Paediatr Acta Suppl 52:1–125PubMed Prader A, Largo RH, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich Longitudinal Study of growth and development. Helv Paediatr Acta Suppl 52:1–125PubMed
7.
go back to reference Gasser T, Kneip A, Binding A, Prader A, Molinari L (1991) The dynamics of linear growth in distance, velocity and acceleration. Ann Hum Biol 18:187–205PubMedCrossRef Gasser T, Kneip A, Binding A, Prader A, Molinari L (1991) The dynamics of linear growth in distance, velocity and acceleration. Ann Hum Biol 18:187–205PubMedCrossRef
8.
go back to reference Garn SM (1970) The earlier gain and the later loss of cortical bone in nutritional perspective. Thomas, Springfield Garn SM (1970) The earlier gain and the later loss of cortical bone in nutritional perspective. Thomas, Springfield
9.
go back to reference Martin DD, Deusch D, Schweizer R, Binder G, Thodberg HH, Ranke MB (2009) Clinical application of automated Greulich–Pyle bone age determination in children with short stature. Pediatr Radiol 39:598–607PubMedCrossRef Martin DD, Deusch D, Schweizer R, Binder G, Thodberg HH, Ranke MB (2009) Clinical application of automated Greulich–Pyle bone age determination in children with short stature. Pediatr Radiol 39:598–607PubMedCrossRef
10.
go back to reference Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66PubMedCrossRef Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66PubMedCrossRef
11.
go back to reference Thodberg HH (2009) An automated method for determination of bone age. J Clin Endocrinol Metab 94:2239–2244PubMedCrossRef Thodberg HH (2009) An automated method for determination of bone age. J Clin Endocrinol Metab 94:2239–2244PubMedCrossRef
12.
go back to reference van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39:591–597PubMedCrossRef van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39:591–597PubMedCrossRef
13.
go back to reference Martin DD, Sato K, Sato M, Thodberg HH, Tanaka T (2010) Validation of a new method for automated determination of bone age in Japanese children. Horm Res Paediatr 74:15–22PubMedCrossRef Martin DD, Sato K, Sato M, Thodberg HH, Tanaka T (2010) Validation of a new method for automated determination of bone age in Japanese children. Horm Res Paediatr 74:15–22PubMedCrossRef
14.
go back to reference Martin DD, Neuhof J, Jenni OG, Ranke MB, Thodberg HH (2010) Automatic determination of left- and right-hand bone age in the First Zurich Longitudinal Study. Horm Res Paediatr 74:50–55PubMedCrossRef Martin DD, Neuhof J, Jenni OG, Ranke MB, Thodberg HH (2010) Automatic determination of left- and right-hand bone age in the First Zurich Longitudinal Study. Horm Res Paediatr 74:50–55PubMedCrossRef
15.
go back to reference Thodberg HH, Jenni OG, Ranke MB, Martin DD (2010) Validation of bone age methods through prediction of final adult height. Horm Res Paediatr 73:398–404PubMedCrossRef Thodberg HH, Jenni OG, Ranke MB, Martin DD (2010) Validation of bone age methods through prediction of final adult height. Horm Res Paediatr 73:398–404PubMedCrossRef
16.
go back to reference Thodberg HH, Olafsdottir H (2003) Adding curvature to minimum description length shape models. British Machine Vision Conference 5, pp 14–16 Thodberg HH, Olafsdottir H (2003) Adding curvature to minimum description length shape models. British Machine Vision Conference 5, pp 14–16
17.
go back to reference Rosholm A, Hyldstrup L, Baeksgaard L, Grunkin M, Thodberg HH (2001) Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12:961–969PubMedCrossRef Rosholm A, Hyldstrup L, Baeksgaard L, Grunkin M, Thodberg HH (2001) Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12:961–969PubMedCrossRef
18.
go back to reference Seeman E (2001) Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584PubMedCrossRef Seeman E (2001) Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584PubMedCrossRef
19.
go back to reference Frost HM, Schonau E (2000) The“muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13:571–590PubMed Frost HM, Schonau E (2000) The“muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13:571–590PubMed
20.
go back to reference Martin DD, Heckmann C, Walter C, Ranke MB, Thodberg HH, Binder G (2010) Differentiation of growth hormone effects on metacarpal bone and bone age in children with growth hormone deficiency. Osteoporos Int (in press) Martin DD, Heckmann C, Walter C, Ranke MB, Thodberg HH, Binder G (2010) Differentiation of growth hormone effects on metacarpal bone and bone age in children with growth hormone deficiency. Osteoporos Int (in press)
Metadata
Title
Metacarpal thickness, width, length and medullary diameter in children—reference curves from the First Zürich Longitudinal Study
Authors
D. D. Martin
C. Heckmann
O. G. Jenni
M. B. Ranke
G. Binder
H. H. Thodberg
Publication date
01-05-2011
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 5/2011
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-010-1389-9

Other articles of this Issue 5/2011

Osteoporosis International 5/2011 Go to the issue