Skip to main content
Top
Published in: Chinese Medicine 1/2017

Open Access 01-12-2017 | Research

Metabolomics approach reveals annual metabolic variation in roots of Cyathula officinalis Kuan based on gas chromatography–mass spectrum

Authors: Kai Tong, Zhao-ling Li, Xu Sun, Shen Yan, Mei-jie Jiang, Meng-sheng Deng, Ji Chen, Jing-wei Li, Meng-liang Tian

Published in: Chinese Medicine | Issue 1/2017

Login to get access

Abstract

Background

Herbal quality is strongly influenced by harvest time. It is therefore one of crucial factors that should be well respected by herbal producers when optimizing cultivation techniques, so that to obtain herbal products of high quality. In this work, we paid attention on one of common used Chinese herbals, Cyathula officinalis Kuan. According to previous studies, its quality may be related with growth years because of the variation of several main bioactive components in different growth years. However, information about the whole chemical composition is still scarce, which may jointly determine the herbal quality.

Methods

Cyathula officinalis samples were collected in 1–4 growth years after sowing. To obtain a global insight on chemical profile of herbs, we applied a metabolomics approach based on gas chromatography–mass spectrum. Analysis of variance, principal component analysis, partial least squares discriminant analysis and hierarchical cluster analysis were combined to explore the significant difference in different growth years.

Results

166 metabolites were identified by using gas chromatography–mass spectrum method. 63 metabolites showed significant change in different growth years in terms of analysis of variance. Those metabolites then were grouped into 4 classes by hierarchical cluster analysis, characterizing the samples of different growth ages. Samples harvested in the earliest years (1–2) were obviously differ with the latest years (3–4) as reported by principal component analysis. Further, partial least squares discriminant analysis revealed the detail difference in each growth year. Gluconic acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, mannose, oxalic acid, digalacturonic acid, lactic acid, 2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citramalic acid, N-carbamylglutamate, and cellobiose are the main 15 discrimination metabolites between different growth years.

Conclusion

Harvest time should be well considered when producing C. officinalis. In order to boost the consistency of herbal quality, C. officinalis is recommended to harvest in 4th growth year. The method of GC–MS combined with multivariate analysis was a powerful tool to evaluate the herbal quality.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li YH, Chen F, Wang JF, Wang Y, Zhang JQ, Guo T. Analysis of nine compounds from Alpinia oxyphylla fruit at different harvest time using UFLC-MS/MS and an extraction method optimized by orthogonal design. Chem Cent J. 2013;7:134.CrossRefPubMedPubMedCentral Li YH, Chen F, Wang JF, Wang Y, Zhang JQ, Guo T. Analysis of nine compounds from Alpinia oxyphylla fruit at different harvest time using UFLC-MS/MS and an extraction method optimized by orthogonal design. Chem Cent J. 2013;7:134.CrossRefPubMedPubMedCentral
2.
go back to reference Douglas JA, Follett JM, Parmenter GA, Sansom CE, Perry NB, Littler RA. Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia. 2010;7:925.CrossRef Douglas JA, Follett JM, Parmenter GA, Sansom CE, Perry NB, Littler RA. Seasonal variation of biomass and bioactive alkaloid content of goldenseal, Hydrastis canadensis. Fitoterapia. 2010;7:925.CrossRef
3.
go back to reference He CE, Wei J, Jin Y, Chen S. Bioactive components of the roots of Salvia miltiorrhizae: changes related to harvest time and germplasm line. Ind Crop Prod. 2010;3:313.CrossRef He CE, Wei J, Jin Y, Chen S. Bioactive components of the roots of Salvia miltiorrhizae: changes related to harvest time and germplasm line. Ind Crop Prod. 2010;3:313.CrossRef
4.
go back to reference Gao CY, Lu YH, Tian CR, Xu JG, Guo XP, Zhou R, Hao G. Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time. Food Chem. 2011;2:615.CrossRef Gao CY, Lu YH, Tian CR, Xu JG, Guo XP, Zhou R, Hao G. Main nutrients, phenolics, antioxidant activity, DNA damage protective effect and microstructure of Sphallerocarpus gracilis root at different harvest time. Food Chem. 2011;2:615.CrossRef
5.
go back to reference Xin-Yue SO, Ying-Dong LI, Yan-Ping SH, Ling JI, Juan CH. Quality control of traditional Chinese medicines: a review. Chin J Nat Med. 2013;6:596. Xin-Yue SO, Ying-Dong LI, Yan-Ping SH, Ling JI, Juan CH. Quality control of traditional Chinese medicines: a review. Chin J Nat Med. 2013;6:596.
6.
go back to reference Goodarzi M, Russell PJ, Vander Heyden Y. Similarity analyses of chromatographic herbal fingerprints: a review. Anal Chim Acta. 2013;804:16.CrossRefPubMed Goodarzi M, Russell PJ, Vander Heyden Y. Similarity analyses of chromatographic herbal fingerprints: a review. Anal Chim Acta. 2013;804:16.CrossRefPubMed
7.
go back to reference Zhang B, Peng Y, Zhang Z, Liu H, Qi Y, Liu S, Xiao P. GAP production of TCM herbs in China. Planta Med. 2010;76(17):1948.CrossRefPubMed Zhang B, Peng Y, Zhang Z, Liu H, Qi Y, Liu S, Xiao P. GAP production of TCM herbs in China. Planta Med. 2010;76(17):1948.CrossRefPubMed
8.
go back to reference Commission Chinese Pharmacopoeia. Pharmacopoeia of People’s Republic of China. Beijing: China Medical Science Press; 2015. p. 38–9. Commission Chinese Pharmacopoeia. Pharmacopoeia of People’s Republic of China. Beijing: China Medical Science Press; 2015. p. 38–9.
9.
go back to reference Park HY, Lim H, Kim HP, Kwon YS. Downregulation of matrix metalloproteinase-13 by the root extract of Cyathula officinalis Kuan and its constituents in IL-1beta-treated chondrocytes. Planta Med. 2011;13:1528.CrossRef Park HY, Lim H, Kim HP, Kwon YS. Downregulation of matrix metalloproteinase-13 by the root extract of Cyathula officinalis Kuan and its constituents in IL-1beta-treated chondrocytes. Planta Med. 2011;13:1528.CrossRef
10.
go back to reference Han X, Shen S, Liu T, Du X, Cao X, Feng H, Zeng X. Characterization and antioxidant activities of the polysaccharides from Radix Cyathulae officinalis Kuan. Int J Biol Macromol. 2015;72:544.CrossRefPubMed Han X, Shen S, Liu T, Du X, Cao X, Feng H, Zeng X. Characterization and antioxidant activities of the polysaccharides from Radix Cyathulae officinalis Kuan. Int J Biol Macromol. 2015;72:544.CrossRefPubMed
11.
go back to reference Feng H, Du X, Tang J, Cao X, Han X, Chen Z, Chen Y, Zeng X. Enhancement of the immune responses to foot-and-mouth disease vaccination in mice by oral administration of a Novel polysaccharide from the roots of Radix Cyathulae officinalis Kuan (RC). Cell Immunol. 2013;2:111.CrossRef Feng H, Du X, Tang J, Cao X, Han X, Chen Z, Chen Y, Zeng X. Enhancement of the immune responses to foot-and-mouth disease vaccination in mice by oral administration of a Novel polysaccharide from the roots of Radix Cyathulae officinalis Kuan (RC). Cell Immunol. 2013;2:111.CrossRef
12.
go back to reference Lai JN, Chen HJ, Chen CC, Lin JH, Hwang JS, Wang JD. Duhuo Jisheng Tang for treating osteoarthritis of the knee: a prospective clinical observation. Chin Med. 2007;2(1):4.CrossRefPubMedPubMedCentral Lai JN, Chen HJ, Chen CC, Lin JH, Hwang JS, Wang JD. Duhuo Jisheng Tang for treating osteoarthritis of the knee: a prospective clinical observation. Chin Med. 2007;2(1):4.CrossRefPubMedPubMedCentral
13.
go back to reference Ni LJ, Xu XL, Zhang LG, Shi WZ. Quantitative evaluation of the in vitro effect and interactions of active fractions in Yaotongning-based formulae on prostaglandin E 2 production. J Ethnopharmacol. 2014;154:807.CrossRefPubMed Ni LJ, Xu XL, Zhang LG, Shi WZ. Quantitative evaluation of the in vitro effect and interactions of active fractions in Yaotongning-based formulae on prostaglandin E 2 production. J Ethnopharmacol. 2014;154:807.CrossRefPubMed
14.
go back to reference Wu J, Yuan Q, Zhang D, Zhang X, Zhao L, Zhang X, Ruan J. Evaluation of Chinese medicine Qian-Yu for chronic bacterial prostatitis in rats. Indian J Pharmacol. 2011;5:532. Wu J, Yuan Q, Zhang D, Zhang X, Zhao L, Zhang X, Ruan J. Evaluation of Chinese medicine Qian-Yu for chronic bacterial prostatitis in rats. Indian J Pharmacol. 2011;5:532.
15.
go back to reference Zhou R. Phytochemical investigation on two plants, Cyathula officinalis Kuan and Combretum griffithii. Chengdu: Chengdu Institute of Organic Chemistry, Chinese Academy of Science; 2004. Zhou R. Phytochemical investigation on two plants, Cyathula officinalis Kuan and Combretum griffithii. Chengdu: Chengdu Institute of Organic Chemistry, Chinese Academy of Science; 2004.
16.
go back to reference Zhang XJ, Qiu JF, Guo LP, Wang Y, Li P, Yang FQ, Su H, Wan JB. Discrimination of multi-origin chinese herbal medicines using gas chromatography–mass spectrometry-based fatty acid profiling. Molecules. 2013;18(12):15329.CrossRefPubMed Zhang XJ, Qiu JF, Guo LP, Wang Y, Li P, Yang FQ, Su H, Wan JB. Discrimination of multi-origin chinese herbal medicines using gas chromatography–mass spectrometry-based fatty acid profiling. Molecules. 2013;18(12):15329.CrossRefPubMed
17.
go back to reference Hu C, Xu G. Metabolomics and traditional Chinese medicine. TrAC, Trends Anal Chem. 2014;61:207.CrossRef Hu C, Xu G. Metabolomics and traditional Chinese medicine. TrAC, Trends Anal Chem. 2014;61:207.CrossRef
18.
go back to reference Buriani A, Garcia-Bermejo ML, Bosisio E, Xu Q, Li H, Dong X, Simmonds MS, Carrara M, Tejedor N, Lucio-Cazana J, Hylands PJ. Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol. 2012;3:535.CrossRef Buriani A, Garcia-Bermejo ML, Bosisio E, Xu Q, Li H, Dong X, Simmonds MS, Carrara M, Tejedor N, Lucio-Cazana J, Hylands PJ. Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future. J Ethnopharmacol. 2012;3:535.CrossRef
19.
go back to reference Xiang Z, Wang XQ, Cai XJ, Zeng S. Metabolomics study on quality control and discrimination of three Curcuma species based on gas chromatograph–mass spectrometry. Phytochem Anal. 2011;5:411.CrossRef Xiang Z, Wang XQ, Cai XJ, Zeng S. Metabolomics study on quality control and discrimination of three Curcuma species based on gas chromatograph–mass spectrometry. Phytochem Anal. 2011;5:411.CrossRef
20.
go back to reference Liu F, Bai X, Yang FQ, Zhang XJ, Hu Y, Li P, Wan JB. Discriminating from species of Curcumae Radix (Yujin) by a UHPLC/Q-TOFMS-based metabolomics approach. Chinese medicine. 2016;11:21.CrossRefPubMedPubMedCentral Liu F, Bai X, Yang FQ, Zhang XJ, Hu Y, Li P, Wan JB. Discriminating from species of Curcumae Radix (Yujin) by a UHPLC/Q-TOFMS-based metabolomics approach. Chinese medicine. 2016;11:21.CrossRefPubMedPubMedCentral
21.
go back to reference Fan QJ, Liu JL, Sun L, Zheng SL, Yuan JC, Tian ML, Kong FL. Development of fingerprinting for quality evaluation of Cyathula officinalis Kuan by LC-DAD-ESI-Q-TOF MS/MS coupled with multivariate statistical analysis. Anal Methods. 2015;7(8):3395.CrossRef Fan QJ, Liu JL, Sun L, Zheng SL, Yuan JC, Tian ML, Kong FL. Development of fingerprinting for quality evaluation of Cyathula officinalis Kuan by LC-DAD-ESI-Q-TOF MS/MS coupled with multivariate statistical analysis. Anal Methods. 2015;7(8):3395.CrossRef
22.
go back to reference Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;24:10038.CrossRef Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;24:10038.CrossRef
23.
go back to reference Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;W1:251.CrossRef Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;W1:251.CrossRef
24.
go back to reference Zhan AY, You XL, Zhan YG. Biosynthetic pathway and applications of plant terpenoid isoprenoid. Lett Biotechnol. 2010;1:131. Zhan AY, You XL, Zhan YG. Biosynthetic pathway and applications of plant terpenoid isoprenoid. Lett Biotechnol. 2010;1:131.
25.
go back to reference Wang L, Zhou GB, Liu P, Sun JH, Liang Y, Yan XJ, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci. 2008;12:4826.CrossRef Wang L, Zhou GB, Liu P, Sun JH, Liang Y, Yan XJ, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci. 2008;12:4826.CrossRef
26.
Metadata
Title
Metabolomics approach reveals annual metabolic variation in roots of Cyathula officinalis Kuan based on gas chromatography–mass spectrum
Authors
Kai Tong
Zhao-ling Li
Xu Sun
Shen Yan
Mei-jie Jiang
Meng-sheng Deng
Ji Chen
Jing-wei Li
Meng-liang Tian
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2017
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-017-0133-1

Other articles of this Issue 1/2017

Chinese Medicine 1/2017 Go to the issue