Skip to main content
Top
Published in: Pediatric Nephrology 1/2020

01-01-2020 | Review

Metabolic requirements of the nephron

Authors: Kasey Cargill, Sunder Sims-Lucas

Published in: Pediatric Nephrology | Issue 1/2020

Login to get access

Abstract

The mammalian kidney is a complex organ that has several metabolically active cell types to aid in waste filtration, salt-water balance, and electrolyte homeostasis in the body. These functions are done primarily through the nephron, which relies on strict regulation of various metabolic pathways. Any deviations in the metabolic profile of nephrons or their precursor cells called nephron progenitors can lead to renal pathologies and abnormal development. Metabolism encompasses the mechanisms by which cells generate intermediate molecules and energy in the form of adenosine triphosphate (ATP). ATP is required by all cells and is mainly generated through glycolysis, fatty acid oxidation, and oxidative phosphorylation. During kidney development, self-renewing or proliferating cells rely on glycolysis to a greater extent than the other metabolic pathways to supply energy, replenish reducing equivalents, and generate nucleotides. However, terminally differentiated cell types rely more heavily on fatty acid oxidation and oxidative phosphorylation performed in the mitochondria to fulfill energy requirements. Further, the mature nephron is comprised of distinct segments and each segment utilizes metabolic pathways to varying degrees depending on the specific function. This review will focus on major metabolic processes performed by the nephron during health and disease.
Literature
1.
go back to reference Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4:a008300PubMedPubMedCentral Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4:a008300PubMedPubMedCentral
2.
go back to reference Schmidt U, Guder WG (1976) Sites of enzyme activity along the nephron. Kidney Int 9:233–242PubMed Schmidt U, Guder WG (1976) Sites of enzyme activity along the nephron. Kidney Int 9:233–242PubMed
3.
go back to reference Guder WG, Wagner S, Wirthensohn G (1986) Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 29:41–45PubMed Guder WG, Wagner S, Wirthensohn G (1986) Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 29:41–45PubMed
4.
go back to reference Liu J, Edgington-Giordano F, Dugas C, Abrams A, Katakam P, Satou R, Saifudeen Z (2017) Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J Am Soc Neprol 28:3323–3335 Liu J, Edgington-Giordano F, Dugas C, Abrams A, Katakam P, Satou R, Saifudeen Z (2017) Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J Am Soc Neprol 28:3323–3335
5.
go back to reference Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20:2328–2337PubMedPubMedCentral Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20:2328–2337PubMedPubMedCentral
6.
go back to reference Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int Suppl:S1–S6 Mather A, Pollock C (2011) Glucose handling by the kidney. Kidney Int Suppl:S1–S6
7.
go back to reference Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310PubMed Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310PubMed
8.
go back to reference Leisz S, Schulz K, Erb S, Oefner P, Dettmer K, Mougiakakos D, Wang E, Marincola FM, Stehle F, Seliger B (2015) Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism. Oncotarget 6:11395–11406PubMedPubMedCentral Leisz S, Schulz K, Erb S, Oefner P, Dettmer K, Mougiakakos D, Wang E, Marincola FM, Stehle F, Seliger B (2015) Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism. Oncotarget 6:11395–11406PubMedPubMedCentral
9.
go back to reference Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117PubMed Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117PubMed
10.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentral
11.
go back to reference Spencer NY, Stanton RC (2017) Glucose-6-phosphate dehydrogenase and the kidney. Nephrol Hypertens 26:43–49 Spencer NY, Stanton RC (2017) Glucose-6-phosphate dehydrogenase and the kidney. Nephrol Hypertens 26:43–49
12.
go back to reference Steer KA, Socher M, Gonzalez AM, McLean P (1982) Regulation of pathways of glucose metabolism in kidney. FEBS Lett 150:494–498PubMed Steer KA, Socher M, Gonzalez AM, McLean P (1982) Regulation of pathways of glucose metabolism in kidney. FEBS Lett 150:494–498PubMed
13.
go back to reference Guder WG, Wirthensohn G (1979) Metabolism of isolated kidney tubules. Eur J Biochem 99:577–584PubMed Guder WG, Wirthensohn G (1979) Metabolism of isolated kidney tubules. Eur J Biochem 99:577–584PubMed
14.
go back to reference Engelking L (2015) Gluconeogenesis. Textbook of Veternary Physiology. Academic Press, pp 225–230 Engelking L (2015) Gluconeogenesis. Textbook of Veternary Physiology. Academic Press, pp 225–230
15.
go back to reference Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis. Diabetes Care 24:382–391PubMed Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis. Diabetes Care 24:382–391PubMed
16.
go back to reference Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426PubMed Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK (2006) Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. Biochim Biophys Acta 1763:1413–1426PubMed
17.
go back to reference Forbes JM (2016) Mitochondria-power players in kidney function? Trends Endocrinol Metab 27:441–442PubMed Forbes JM (2016) Mitochondria-power players in kidney function? Trends Endocrinol Metab 27:441–442PubMed
18.
go back to reference Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477PubMedPubMedCentral Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477PubMedPubMedCentral
19.
go back to reference Ramday RR, Gandour RD, van der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta 1546:21–43 Ramday RR, Gandour RD, van der Leij FR (2001) Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta 1546:21–43
20.
go back to reference Bratic I, Trifunovic A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797:961–967PubMed Bratic I, Trifunovic A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797:961–967PubMed
21.
go back to reference Gautheron DC (1984) Mitochondrial oxidative phosphorylation and respiratory chain: review. J Inher Metab Dis 7:57–61PubMed Gautheron DC (1984) Mitochondrial oxidative phosphorylation and respiratory chain: review. J Inher Metab Dis 7:57–61PubMed
22.
go back to reference Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) The cellular biology of proton-motive force generation by v-ATPases. J Exp Biol 203:89–95PubMed Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (2000) The cellular biology of proton-motive force generation by v-ATPases. J Exp Biol 203:89–95PubMed
23.
24.
go back to reference Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab 12:49 Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab 12:49
25.
go back to reference Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113PubMedPubMedCentral Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113PubMedPubMedCentral
26.
go back to reference Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH (2017) Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 92:1370–1383PubMedPubMedCentral Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH (2017) Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 92:1370–1383PubMedPubMedCentral
27.
go back to reference Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH (2013) Metabolic regulation by p53 family members. Cell Metab 18:617–633PubMedPubMedCentral Berkers CR, Maddocks OD, Cheung EC, Mor I, Vousden KH (2013) Metabolic regulation by p53 family members. Cell Metab 18:617–633PubMedPubMedCentral
28.
go back to reference Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z (2015) p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development 142:1228–1241PubMedPubMedCentral Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z (2015) p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development 142:1228–1241PubMedPubMedCentral
29.
go back to reference Schering B, Reinacher M, Schoner W (1986) Localization and role of pyruvate kinase isoenzymes in the regulation of carbohydrate metabolism and pyruvate recycling in rat kidney cortex. Biochim Biophys Acta 881:62–71PubMed Schering B, Reinacher M, Schoner W (1986) Localization and role of pyruvate kinase isoenzymes in the regulation of carbohydrate metabolism and pyruvate recycling in rat kidney cortex. Biochim Biophys Acta 881:62–71PubMed
31.
go back to reference Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG (2015) Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 4:20–32PubMedPubMedCentral Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG (2015) Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 4:20–32PubMedPubMedCentral
32.
go back to reference Feichtinger RG, Neureiter D, Royer PB, Mayr JA, Zimmermann FA, Jones N, Koegler C, Ratschek M, Sperl W, Kofler B (2011) Heterogeneity of mitochondrial energy metabolism in classical triphasic Wilms tumor. Front Biosci 3:187–193 Feichtinger RG, Neureiter D, Royer PB, Mayr JA, Zimmermann FA, Jones N, Koegler C, Ratschek M, Sperl W, Kofler B (2011) Heterogeneity of mitochondrial energy metabolism in classical triphasic Wilms tumor. Front Biosci 3:187–193
33.
go back to reference Hammer E, Ernst FD, Thiele A, Karanam NK, Kujath C, Evert M, Volker U, Barthlen W (2014) Kidney protein profiling of Wilms' tumor patients by analysis of formalin-fixed paraffin-embedded tissue samples. Clin Chim Acta 433:235–241PubMed Hammer E, Ernst FD, Thiele A, Karanam NK, Kujath C, Evert M, Volker U, Barthlen W (2014) Kidney protein profiling of Wilms' tumor patients by analysis of formalin-fixed paraffin-embedded tissue samples. Clin Chim Acta 433:235–241PubMed
34.
go back to reference Zawacka-Pankau J, Grinkevich VV, Hunten S, Nikulenkov F, Gluch A, Li H, Enge M, Kel A, Selivanova G (2011) Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 286:41600–41615PubMedPubMedCentral Zawacka-Pankau J, Grinkevich VV, Hunten S, Nikulenkov F, Gluch A, Li H, Enge M, Kel A, Selivanova G (2011) Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 286:41600–41615PubMedPubMedCentral
35.
go back to reference Dungwa JV, Hunt LP, Ramani P (2011) Overexpression of carbonic anhydrase and HIF-1alpha in Wilms tumours. BMC Cancer 11:390PubMedPubMedCentral Dungwa JV, Hunt LP, Ramani P (2011) Overexpression of carbonic anhydrase and HIF-1alpha in Wilms tumours. BMC Cancer 11:390PubMedPubMedCentral
36.
go back to reference Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221:125–138PubMed Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221:125–138PubMed
37.
go back to reference Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M, Seliger B, Walter B, Schlosser H, Hartmann A, Andreesen R, Mackensen A, Kreutz M (2011) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 128:2085–2095PubMed Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M, Seliger B, Walter B, Schlosser H, Hartmann A, Andreesen R, Mackensen A, Kreutz M (2011) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 128:2085–2095PubMed
38.
go back to reference LaGory EL, Wu C, Taniguchi CM, Ding CC, Chi JT, von Eyben R, Scott DA, Richardson AD, Giaccia AJ (2015) Suppression of PGC-1alpha is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep 12:116–127 LaGory EL, Wu C, Taniguchi CM, Ding CC, Chi JT, von Eyben R, Scott DA, Richardson AD, Giaccia AJ (2015) Suppression of PGC-1alpha is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep 12:116–127
39.
go back to reference Wang SS, Gu YF, Wolf N, Stefanius K, Christie A, Dey A, Hammer RE, Xie WJ, Rakheja D, Pedrosa I, Carroll TJ, McKay RM, Kapur P, Brugarolas J (2014) Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 111:16538–16543PubMedPubMedCentral Wang SS, Gu YF, Wolf N, Stefanius K, Christie A, Dey A, Hammer RE, Xie WJ, Rakheja D, Pedrosa I, Carroll TJ, McKay RM, Kapur P, Brugarolas J (2014) Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 111:16538–16543PubMedPubMedCentral
40.
go back to reference Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. Chem Med Chem 7:1318–1350PubMed Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. Chem Med Chem 7:1318–1350PubMed
41.
go back to reference Ishimoto Y, Inagi R (2016) Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant 31:1062–1069PubMed Ishimoto Y, Inagi R (2016) Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant 31:1062–1069PubMed
42.
go back to reference Basu RK, Kaddourah A, Terrell T, Mottes T, Arnold P, Jacobs J, Andringa J, Goldstein SL, Prospective Pediatric AKIRG (2015) Assessment of worldwide acute kidney injury, renal angina and epidemiology in critically ill children (AWARE): study protocol for a prospective observational study. BMC Nephrol 16:24PubMedPubMedCentral Basu RK, Kaddourah A, Terrell T, Mottes T, Arnold P, Jacobs J, Andringa J, Goldstein SL, Prospective Pediatric AKIRG (2015) Assessment of worldwide acute kidney injury, renal angina and epidemiology in critically ill children (AWARE): study protocol for a prospective observational study. BMC Nephrol 16:24PubMedPubMedCentral
43.
go back to reference Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61PubMedPubMedCentral Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61PubMedPubMedCentral
44.
go back to reference Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21:1745–1755PubMed Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21:1745–1755PubMed
45.
go back to reference Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE, Karumanchi SA, Rhee EP, Parikh SM (2016) PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531:528–532PubMedPubMedCentral Tran MT, Zsengeller ZK, Berg AH, Khankin EV, Bhasin MK, Kim W, Clish CB, Stillman IE, Karumanchi SA, Rhee EP, Parikh SM (2016) PGC1alpha drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531:528–532PubMedPubMedCentral
47.
go back to reference Kitada M, Kume S, Koya D (2014) Role of sirtuins in kidney disease. Curr Opin Nephrol Hypertens 23:75–79PubMed Kitada M, Kume S, Koya D (2014) Role of sirtuins in kidney disease. Curr Opin Nephrol Hypertens 23:75–79PubMed
48.
go back to reference Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol 27:3356–3367PubMedPubMedCentral Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol 27:3356–3367PubMedPubMedCentral
50.
go back to reference Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:367–378 Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:367–378
51.
go back to reference Rowe I, Boletta A (2014) Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol Dial Transplant 29:1480–1486PubMed Rowe I, Boletta A (2014) Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol Dial Transplant 29:1480–1486PubMed
53.
go back to reference Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, Song XW, Xu H, Mari S, Qian F, Pei Y, Musco G, Boletta A (2013) Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nature Med 19:488–493PubMed Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, Song XW, Xu H, Mari S, Qian F, Pei Y, Musco G, Boletta A (2013) Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nature Med 19:488–493PubMed
54.
go back to reference Ishimoto Y, Inagi R, Yoshihara D, Kugita M, Nagao S, Shimizu A, Takeda N, Wake M, Honda K, Zhou J, Nangaku M (2017) Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol Cell Biol https://doi.org/10.1128/MCB.00337-17 Ishimoto Y, Inagi R, Yoshihara D, Kugita M, Nagao S, Shimizu A, Takeda N, Wake M, Honda K, Zhou J, Nangaku M (2017) Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol Cell Biol https://​doi.​org/​10.​1128/​MCB.​00337-17
55.
go back to reference Flowers EM, Sudderth J, Zacharias L, Mernaugh G, Zent R, DeBerardinis RJ, Carroll TJ (2018) Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat Commun 9:814PubMedPubMedCentral Flowers EM, Sudderth J, Zacharias L, Mernaugh G, Zent R, DeBerardinis RJ, Carroll TJ (2018) Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nat Commun 9:814PubMedPubMedCentral
56.
go back to reference (2013) Kidney Disease: Improving Global Outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. . Kidney Int Suppl 3:1–150 (2013) Kidney Disease: Improving Global Outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. . Kidney Int Suppl 3:1–150
57.
go back to reference (CDC) CfDCaP (2014) National Chronic Kidney Disease Fact Sheet: general information and national estimates on chronic kidney disease in the United States, 2014 (CDC) CfDCaP (2014) National Chronic Kidney Disease Fact Sheet: general information and national estimates on chronic kidney disease in the United States, 2014
58.
go back to reference Plantinga LC, Tuot DS, Powe NR (2010) Awareness of chronic kidney disease among patients and providers. Adv Chronic Kidney Dis 17:225–236PubMedPubMedCentral Plantinga LC, Tuot DS, Powe NR (2010) Awareness of chronic kidney disease among patients and providers. Adv Chronic Kidney Dis 17:225–236PubMedPubMedCentral
59.
go back to reference Becherucci F, Roperto RM, Materassi M, Romagnani P (2016) Chronic kidney disease in children. Clin Kidney J 9:583–591PubMedPubMedCentral Becherucci F, Roperto RM, Materassi M, Romagnani P (2016) Chronic kidney disease in children. Clin Kidney J 9:583–591PubMedPubMedCentral
60.
go back to reference Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y, Allred AL, McDonald C, Susztak K, Barish GD, Pei L (2018) Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci U S A 11(E4910–495):E4910–E4919 Zhao J, Lupino K, Wilkins BJ, Qiu C, Liu J, Omura Y, Allred AL, McDonald C, Susztak K, Barish GD, Pei L (2018) Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease. Proc Natl Acad Sci U S A 11(E4910–495):E4910–E4919
61.
go back to reference Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, Carella M, Schena FP, Grandaliano G, Pertosa G (2009) Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 10:388PubMedPubMedCentral Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, Carella M, Schena FP, Grandaliano G, Pertosa G (2009) Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 10:388PubMedPubMedCentral
62.
go back to reference Han SH, Wu MY, Nam BY, Park JT, Yoo TH, Kang SW, Park J, Chinga F, Li SY, Susztak K (2017) PGC-1alpha protects from notch-induced kidney fibrosis development. J Am Soc Nephrol 28:3312–3322PubMedPubMedCentral Han SH, Wu MY, Nam BY, Park JT, Yoo TH, Kang SW, Park J, Chinga F, Li SY, Susztak K (2017) PGC-1alpha protects from notch-induced kidney fibrosis development. J Am Soc Nephrol 28:3312–3322PubMedPubMedCentral
63.
go back to reference Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, Price P, Li S (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62:1208–1218PubMed Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, Price P, Li S (2002) Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 62:1208–1218PubMed
Metadata
Title
Metabolic requirements of the nephron
Authors
Kasey Cargill
Sunder Sims-Lucas
Publication date
01-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 1/2020
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-018-4157-2

Other articles of this Issue 1/2020

Pediatric Nephrology 1/2020 Go to the issue