Skip to main content
Top
Published in: Drugs 10/2002

01-07-2002 | Review Article

Metabolic and Additional Vascular Effects of Thiazolidinediones

Authors: Dr Fabrice M. A. C Martens, Frank L. J. Visseren, Jacinthe Lemay, Eelco J. P. de Koning, Ton J. Rabelink

Published in: Drugs | Issue 10/2002

Login to get access

Abstract

Several cardiovascular risk factors (dyslipidaemia, hypertension, glucose intolerance, hypercoagulability, obesity, hyperinsulinaemia and low-grade inflammation) cluster in the insulin resistance syndrome. Treatment of these individual risk factors reduces cardiovascular complications. However, targeting the underlying pathophysiological mechanisms of the insulin resistance syndrome is a more rational treatment strategy to further improve cardiovascular outcome.
Our understanding of the so-called cardiovascular dysmetabolic syndrome has been improved by the discovery of nuclear peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the nuclear receptor superfamily. As transcription factors, PPARs regulate the expression of numerous genes and affect glycaemic control, lipid metabolism, vascular tone and inflammation. Activation of the subtype PPAR-γ improves insulin sensitivity. Expression of PPAR-γ is present in several cell types involved in the process of atherosclerosis. Thus, modulation of PPAR-γ activity is an interesting therapeutic approach to reduce cardiovascular events.
Thiazolidinediones are PPAR-γ agonists and constitute a new class of pharmacological agents for the treatment of type 2 (non-insulin-dependent) diabetes mellitus. Two such compounds are currently available for clinical use: rosiglitazone and pioglitazone. Thiazolidinediones improve insulin sensitivity and glycaemic control in patients with type 2 diabetes. In addition, improvement in endothelial function, a decrease in inflammatory conditions, a decrease in plasma levels of free fatty acids and lower blood pressure have been observed, which may have important beneficial effects on the vasculature.
Several questions remain to be answered about PPAR-γ agonists, particularly with respect to the role of PPAR-γ in vascular pathophysiology. More needs to be known about the adverse effects of thiazolidinediones, such as hepatotoxicity, increased low-density lipoprotein cholesterol levels and increased oedema. The paradox of adipocyte differentiation with weight gain concurring with the insulin-sensitising effect of thiazolidinediones is not completely understood. The decrease in blood pressure induced by thiazolidinedione treatment seems incompatible with an increase in the plasma volume, and the discrepancy between the stimulation of the expression of CD36 and the antiatherogenic effects of the thiazolidinediones also needs further explanation. Long-term clinical trials of thiazolidinediones with cardiovascular endpoints are currently in progress.
In conclusion, studying the effects of thiazolidinediones may shed more light on the mechanisms involved in the insulin resistance syndrome. Furthermore, thiazolidinediones could have specific, direct effects on processes involved in the development of vascular abnormalities.
Literature
1.
go back to reference Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–607PubMedCrossRef Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595–607PubMedCrossRef
2.
go back to reference Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105(1A): S77–82CrossRef Fagan TC, Deedwania PC. The cardiovascular dysmetabolic syndrome. Am J Med 1998; 105(1A): S77–82CrossRef
3.
go back to reference Meigs JB. Invited commentary: insulin resistance syndrome?. Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000; 152(10): 908–11PubMedCrossRef Meigs JB. Invited commentary: insulin resistance syndrome?. Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors. Am J Epidemiol 2000; 152(10): 908–11PubMedCrossRef
4.
go back to reference Mudaliar S, Henry R. New Oral Therapies For Type 2 Diabetes Mellitus: The Glitazones or Insulin Sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef Mudaliar S, Henry R. New Oral Therapies For Type 2 Diabetes Mellitus: The Glitazones or Insulin Sensitizers. Annu Rev Med 2001; 52: 239–57PubMedCrossRef
5.
go back to reference Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitis: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134): 823–8PubMedCrossRef Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitis: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134): 823–8PubMedCrossRef
6.
go back to reference Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet 1999; 354(9173): 141–8PubMedCrossRef Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet 1999; 354(9173): 141–8PubMedCrossRef
7.
go back to reference Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 335–63PubMedCrossRef Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 335–63PubMedCrossRef
8.
go back to reference Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50PubMedCrossRef Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50PubMedCrossRef
9.
go back to reference Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–9PubMedCrossRef
10.
go back to reference Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527–50PubMedCrossRef Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527–50PubMedCrossRef
11.
go back to reference Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49(10): 497–505PubMedCrossRef Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000; 49(10): 497–505PubMedCrossRef
12.
go back to reference Loviscach M, Rehman N, Carter L, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000; 43(3): 304–11PubMedCrossRef Loviscach M, Rehman N, Carter L, et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 2000; 43(3): 304–11PubMedCrossRef
13.
go back to reference Marx N, Libby P, Plutzky J. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8(4): 203–10PubMedCrossRef Marx N, Libby P, Plutzky J. Peroxisome proliferator-activated receptors (PPARs) and their role in the vessel wall: possible mediators of cardiovascular risk? J Cardiovasc Risk 2001; 8(4): 203–10PubMedCrossRef
14.
go back to reference Elangbam CS, Tyler RD, Lightfoot RM. Peroxisome proliferator-activated receptors in atherosclerosis and inflammation-an update. Toxicol Pathol 2001; 29(2): 224–31PubMedCrossRef Elangbam CS, Tyler RD, Lightfoot RM. Peroxisome proliferator-activated receptors in atherosclerosis and inflammation-an update. Toxicol Pathol 2001; 29(2): 224–31PubMedCrossRef
15.
go back to reference Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000; 43(9): 1165–9PubMedCrossRef Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000; 43(9): 1165–9PubMedCrossRef
16.
go back to reference Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPARgamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7(1): 41–7PubMedCrossRef Moore KJ, Rosen ED, Fitzgerald ML, et al. The role of PPARgamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7(1): 41–7PubMedCrossRef
17.
go back to reference Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83(5): 803–12PubMedCrossRef Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995; 83(5): 803–12PubMedCrossRef
18.
go back to reference Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 507–14PubMedCrossRef Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47(4): 507–14PubMedCrossRef
19.
go back to reference Chaiken RL, Eckert-Norton M, Pasmantier R, et al. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995; 38(11): 1307–12PubMedCrossRef Chaiken RL, Eckert-Norton M, Pasmantier R, et al. Metabolic effects of darglitazone, an insulin sensitizer, in NIDDM subjects. Diabetologia 1995; 38(11): 1307–12PubMedCrossRef
20.
go back to reference Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193–203PubMedCrossRef Suter SL, Nolan JJ, Wallace P, et al. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193–203PubMedCrossRef
21.
go back to reference Sironi AM, Vichi S, Gastaldelli A, et al. Effects of troglitazone on insulin action and cardiovascular risk factors in patients with non-insulin-dependent diabetes. Clin Pharmacol Ther 1997; 62(2): 194–202PubMedCrossRef Sironi AM, Vichi S, Gastaldelli A, et al. Effects of troglitazone on insulin action and cardiovascular risk factors in patients with non-insulin-dependent diabetes. Clin Pharmacol Ther 1997; 62(2): 194–202PubMedCrossRef
22.
go back to reference Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176–85PubMed Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176–85PubMed
23.
go back to reference Raman P, Judd RL. Role of glucose and insulin in thiazolidinedione-induced alterations in hepatic gluconeogenesis. Eur J Pharmacol 2000; 409(1): 19–29PubMedCrossRef Raman P, Judd RL. Role of glucose and insulin in thiazolidinedione-induced alterations in hepatic gluconeogenesis. Eur J Pharmacol 2000; 409(1): 19–29PubMedCrossRef
24.
go back to reference Zierath JR, Ryder JW, Doebber T, et al. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 1998; 139(12): 5034–41PubMedCrossRef Zierath JR, Ryder JW, Doebber T, et al. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 1998; 139(12): 5034–41PubMedCrossRef
25.
go back to reference Preininger K, Stingl H, Englisch R, et al. Acute troglitazone action in isolated perfused rat liver. Br J Pharmacol 1999; 126(1): 372–8PubMedCrossRef Preininger K, Stingl H, Englisch R, et al. Acute troglitazone action in isolated perfused rat liver. Br J Pharmacol 1999; 126(1): 372–8PubMedCrossRef
26.
go back to reference Tanaka T, Itoh H, Doi K, et al. Down regulation of peroxisome proliferator-activated receptorgamma expression by inflammatory cytokines and its reversal by thiazolidinediones. Diabetologia 1999; 42(6): 702–10PubMedCrossRef Tanaka T, Itoh H, Doi K, et al. Down regulation of peroxisome proliferator-activated receptorgamma expression by inflammatory cytokines and its reversal by thiazolidinediones. Diabetologia 1999; 42(6): 702–10PubMedCrossRef
27.
go back to reference Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46(9): 1393–9PubMedCrossRef Hallakou S, Doare L, Foufelle F, et al. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 1997; 46(9): 1393–9PubMedCrossRef
28.
go back to reference Hallakou S, Foufelle F, Doare L, et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocyte differentiation. Diabetologia 1998; 41(8): 963–8PubMedCrossRef Hallakou S, Foufelle F, Doare L, et al. Pioglitazone-induced increase of insulin sensitivity in the muscles of the obese Zucker fa/fa rat cannot be explained by local adipocyte differentiation. Diabetologia 1998; 41(8): 963–8PubMedCrossRef
29.
go back to reference Matsuhisa M, Shi ZQ, Wan C, et al. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997; 46(2): 224–31PubMedCrossRef Matsuhisa M, Shi ZQ, Wan C, et al. The effect of pioglitazone on hepatic glucose uptake measured with indirect and direct methods in alloxan-induced diabetic dogs. Diabetes 1997; 46(2): 224–31PubMedCrossRef
30.
go back to reference Szalkowski D, White-Carrington S, Berger J, et al. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136(4): 1474–81PubMedCrossRef Szalkowski D, White-Carrington S, Berger J, et al. Antidiabetic thiazolidinediones block the inhibitory effect of tumor necrosis factor-alpha on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136(4): 1474–81PubMedCrossRef
31.
go back to reference Shimaya A, Kurosaki E, Shioduka K, et al. YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes. Horm Metab Res 1998; 30(9): 543–8PubMedCrossRef Shimaya A, Kurosaki E, Shioduka K, et al. YM268 increases the glucose uptake, cell differentiation, and mRNA expression of glucose transporter in 3T3-L1 adipocytes. Horm Metab Res 1998; 30(9): 543–8PubMedCrossRef
32.
go back to reference Arakawa K, Ishihara T, Aoto M, et al. Actions of novel anti-diabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol 1998; 125(3): 429–36PubMedCrossRef Arakawa K, Ishihara T, Aoto M, et al. Actions of novel anti-diabetic thiazolidinedione, T-174, in animal models of non-insulin-dependent diabetes mellitus (NIDDM) and in cultured muscle cells. Br J Pharmacol 1998; 125(3): 429–36PubMedCrossRef
33.
go back to reference Lee MK, Miles PD, Khoursheed M, et al. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994; 43(12): 1435–9PubMedCrossRef Lee MK, Miles PD, Khoursheed M, et al. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994; 43(12): 1435–9PubMedCrossRef
34.
go back to reference Miles PD, Romeo OM, Higo K, et al. TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 1997; 46(11): 1678–83PubMedCrossRef Miles PD, Romeo OM, Higo K, et al. TNF-alpha-induced insulin resistance in vivo and its prevention by troglitazone. Diabetes 1997; 46(11): 1678–83PubMedCrossRef
35.
go back to reference Miles PD, Higo K, Romeo OM, et al. Troglitazone prevents hyperglycemia-induced but not glucosamine-induced insulin resistance. Diabetes 1998; 47(3): 395–400PubMedCrossRef Miles PD, Higo K, Romeo OM, et al. Troglitazone prevents hyperglycemia-induced but not glucosamine-induced insulin resistance. Diabetes 1998; 47(3): 395–400PubMedCrossRef
36.
go back to reference Kraegen EW, James DE, Jenkins AB, et al. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 1989; 38(11): 1089–93PubMedCrossRef Kraegen EW, James DE, Jenkins AB, et al. A potent in vivo effect of ciglitazone on muscle insulin resistance induced by high fat feeding of rats. Metabolism 1989; 38(11): 1089–93PubMedCrossRef
37.
go back to reference Prigeon RL, Kahn SE, Porte Jr D. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83(3): 819–23PubMedCrossRef Prigeon RL, Kahn SE, Porte Jr D. Effect of troglitazone on B cell function, insulin sensitivity, and glycemic control in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83(3): 819–23PubMedCrossRef
38.
go back to reference Fonseca VA, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 1998; 83(9): 3169–76PubMedCrossRef Fonseca VA, Valiquett TR, Huang SM, et al. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab 1998; 83(9): 3169–76PubMedCrossRef
40.
go back to reference Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338(13): 867–72PubMedCrossRef Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338(13): 867–72PubMedCrossRef
41.
go back to reference Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with Type 2 diabetes mellitus. Diabetes Med 2000; 17(4): 287–94CrossRef Nolan JJ, Jones NP, Patwardhan R, et al. Rosiglitazone taken once daily provides effective glycaemic control in patients with Type 2 diabetes mellitus. Diabetes Med 2000; 17(4): 287–94CrossRef
42.
go back to reference Wolffenbuttel BH, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabetes Med 2000; 17(1): 40–7CrossRef Wolffenbuttel BH, Gomis R, Squatrito S, et al. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabetes Med 2000; 17(1): 40–7CrossRef
43.
go back to reference Wolffenbuttel BH, Sels JP, Huijberts MS. Rosiglitazone. Expert Opin Pharmacother 2001; 2(3): 467–78PubMedCrossRef Wolffenbuttel BH, Sels JP, Huijberts MS. Rosiglitazone. Expert Opin Pharmacother 2001; 2(3): 467–78PubMedCrossRef
44.
go back to reference Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22(12): 1395–409PubMedCrossRef Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000; 22(12): 1395–409PubMedCrossRef
45.
go back to reference Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000; 23(11): 1605–11PubMedCrossRef Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000; 23(11): 1605–11PubMedCrossRef
46.
go back to reference Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93PubMedCrossRef Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93PubMedCrossRef
47.
go back to reference Berkowitz K, Peters R, Kjos SL, et al. Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996; 45(11): 1572–9PubMedCrossRef Berkowitz K, Peters R, Kjos SL, et al. Effect of troglitazone on insulin sensitivity and pancreatic beta-cell function in women at high risk for NIDDM. Diabetes 1996; 45(11): 1572–9PubMedCrossRef
48.
go back to reference Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994; 135(2): 798–800PubMedCrossRef Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994; 135(2): 798–800PubMedCrossRef
49.
go back to reference Sandouk T, Reda D, Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 1993; 133(1): 352–9PubMedCrossRef Sandouk T, Reda D, Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology 1993; 133(1): 352–9PubMedCrossRef
50.
go back to reference Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416–22PubMedCrossRef Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416–22PubMedCrossRef
51.
go back to reference Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000; 105(3): 287–92PubMedCrossRef Miles PD, Barak Y, He W, et al. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000; 105(3): 287–92PubMedCrossRef
52.
go back to reference Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001; 27(1): 1–9PubMedCrossRef Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol 2001; 27(1): 1–9PubMedCrossRef
53.
go back to reference Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–56PubMedCrossRef Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–56PubMedCrossRef
54.
go back to reference Takamura T, Nohara E, Nagai Y, et al. Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 2001; 422(1–3): 23–9PubMedCrossRef Takamura T, Nohara E, Nagai Y, et al. Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARgamma mRNA expression in 3T3-L1 adipocytes. Eur J Pharmacol 2001; 422(1–3): 23–9PubMedCrossRef
55.
go back to reference Torti FM, Torti S V, Larrick JW, et al. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108(3): 1105–13PubMedCrossRef Torti FM, Torti S V, Larrick JW, et al. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108(3): 1105–13PubMedCrossRef
56.
go back to reference Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134(1): 264–70PubMedCrossRef Hofmann C, Lorenz K, Braithwaite SS, et al. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134(1): 264–70PubMedCrossRef
57.
go back to reference Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61PubMedCrossRef Okuno A, Tamemoto H, Tobe K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101(6): 1354–61PubMedCrossRef
58.
go back to reference Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49(6): 883–8PubMedCrossRef Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49(6): 883–8PubMedCrossRef
59.
go back to reference Niesler CU, Urso B, Prins JB, et al. IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes. J Endocrinol 2000; 167(1): 165–74PubMedCrossRef Niesler CU, Urso B, Prins JB, et al. IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes. J Endocrinol 2000; 167(1): 165–74PubMedCrossRef
60.
go back to reference Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12PubMedCrossRef Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12PubMedCrossRef
61.
go back to reference Sreenan S, Keck S, Fuller T, et al. Effects of troglitazone on substrate storage and utilization in insulin-resistant rats. Am J Physiol 1999; 276 (6 Pt 1): E1119–29PubMed Sreenan S, Keck S, Fuller T, et al. Effects of troglitazone on substrate storage and utilization in insulin-resistant rats. Am J Physiol 1999; 276 (6 Pt 1): E1119–29PubMed
62.
go back to reference Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–50PubMedCrossRef Shimabukuro M, Zhou YT, Lee Y, et al. Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats. J Biol Chem 1998; 273(6): 3547–50PubMedCrossRef
63.
go back to reference Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283(13): 1695–702PubMedCrossRef Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283(13): 1695–702PubMedCrossRef
64.
go back to reference Rebrin K, Steil GM, Getty L, et al. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44(9): 1038–45PubMedCrossRef Rebrin K, Steil GM, Getty L, et al. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44(9): 1038–45PubMedCrossRef
65.
go back to reference Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 2001; 50(3): 660–6PubMedCrossRef Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs. Diabetes 2001; 50(3): 660–6PubMedCrossRef
66.
go back to reference Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14(4): 263–83PubMedCrossRef Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14(4): 263–83PubMedCrossRef
67.
go back to reference Martin G, Schoonjans K, Staels B, et al. PPARgamma activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 1998; 137: S75–80PubMedCrossRef Martin G, Schoonjans K, Staels B, et al. PPARgamma activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 1998; 137: S75–80PubMedCrossRef
68.
go back to reference Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52PubMedCrossRef Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52PubMedCrossRef
69.
go back to reference Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999; 21(1): 76–83PubMedCrossRef Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999; 21(1): 76–83PubMedCrossRef
70.
go back to reference Miyaoka K, Kuwasako T, Hirano K, et al. CD36 deficiency associated with insulin resistance. Lancet 2001; 357(9257): 686–7PubMedCrossRef Miyaoka K, Kuwasako T, Hirano K, et al. CD36 deficiency associated with insulin resistance. Lancet 2001; 357(9257): 686–7PubMedCrossRef
71.
go back to reference Wolfrum C, Borrmann CM, Borchers T, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors al. Proc Natl Acad Sci U S A 2001; 98(5): 2323–8PubMedCrossRef Wolfrum C, Borrmann CM, Borchers T, et al. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors al. Proc Natl Acad Sci U S A 2001; 98(5): 2323–8PubMedCrossRef
72.
go back to reference Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83(10): 933–43PubMedCrossRef Glorian M, Duplus E, Beale EG, et al. A single element in the phosphoenolpyruvate carboxykinase gene mediates thiazolidinedione action specifically in adipocytes. Biochimie 2001; 83(10): 933–43PubMedCrossRef
73.
go back to reference Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous PPARgamma deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245–54PubMedCrossRef Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous PPARgamma deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245–54PubMedCrossRef
74.
go back to reference Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9PubMedCrossRef Maeda N, Takahashi M, Funahashi T, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094–9PubMedCrossRef
75.
go back to reference Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272(2): 971–6PubMedCrossRef Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272(2): 971–6PubMedCrossRef
76.
go back to reference Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651): 610–4PubMedCrossRef Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651): 610–4PubMedCrossRef
77.
go back to reference Zhang B, Berger J, Hu E, et al. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996; 10(11): 1457–66PubMedCrossRef Zhang B, Berger J, Hu E, et al. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996; 10(11): 1457–66PubMedCrossRef
78.
go back to reference Feinstein R, Kanety H, Papa MZ, et al. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993; 268(35): 26055–8PubMed Feinstein R, Kanety H, Papa MZ, et al. Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J Biol Chem 1993; 268(35): 26055–8PubMed
79.
go back to reference Fukuzawa M, Satoh J, Qiang X, et al. Inhibition of tumor necrosis factor-alpha with anti-diabetic agents. Diabetes Res Clin Pract 1999; 43(3): 147–54PubMedCrossRef Fukuzawa M, Satoh J, Qiang X, et al. Inhibition of tumor necrosis factor-alpha with anti-diabetic agents. Diabetes Res Clin Pract 1999; 43(3): 147–54PubMedCrossRef
80.
go back to reference Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863–9PubMedCrossRef Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100(7): 1863–9PubMedCrossRef
81.
go back to reference Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes 2001; 50(5): 1083–92PubMedCrossRef Iwata M, Haruta T, Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator—activated receptor-gamma. Diabetes 2001; 50(5): 1083–92PubMedCrossRef
82.
go back to reference De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98(4): 1004–9PubMedCrossRef De Vos P, Lefebvre AM, Miller SG, et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98(4): 1004–9PubMedCrossRef
83.
go back to reference Clarkson P, Celermajer DS, Donald AE, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 1996; 28(3): 573–9PubMedCrossRef Clarkson P, Celermajer DS, Donald AE, et al. Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 1996; 28(3): 573–9PubMedCrossRef
84.
go back to reference Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001; 73(4): 673–86PubMed Brown AA, Hu FB. Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 2001; 73(4): 673–86PubMed
85.
86.
go back to reference Standl E, Schnell O. A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 2000; 43(12): 1455–69PubMedCrossRef Standl E, Schnell O. A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 2000; 43(12): 1455–69PubMedCrossRef
87.
go back to reference Fujishima S, Ohya Y, Nakamura Y, et al. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens 1998; 11(9): 1134–7PubMedCrossRef Fujishima S, Ohya Y, Nakamura Y, et al. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens 1998; 11(9): 1134–7PubMedCrossRef
88.
go back to reference Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36(3): 430–5PubMedCrossRef Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36(3): 430–5PubMedCrossRef
89.
go back to reference Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28(6): 1024–31PubMedCrossRef Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28(6): 1024–31PubMedCrossRef
90.
go back to reference Inoguchi T, Li P, Yu HY, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49(11): 1939–45PubMedCrossRef Inoguchi T, Li P, Yu HY, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49(11): 1939–45PubMedCrossRef
91.
go back to reference Kotchen TA, Zhang HY, Reddy S, et al. Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol 1996; 270 (3 Pt 2): R660–6PubMed Kotchen TA, Zhang HY, Reddy S, et al. Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol 1996; 270 (3 Pt 2): R660–6PubMed
92.
go back to reference Zhang F, Sowers JR, Ram JL, et al. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension 1994; 24(2): 170–5PubMedCrossRef Zhang F, Sowers JR, Ram JL, et al. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension 1994; 24(2): 170–5PubMedCrossRef
93.
go back to reference Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995; 96(1): 354–60PubMedCrossRef Buchanan TA, Meehan WP, Jeng YY, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995; 96(1): 354–60PubMedCrossRef
94.
go back to reference Hattori Y, Hattori S, Kasai K. Troglitazone upregulates nitric oxide synthesis in vascular smooth muscle cells. Hypertension 1999; 33(4): 943–8PubMedCrossRef Hattori Y, Hattori S, Kasai K. Troglitazone upregulates nitric oxide synthesis in vascular smooth muscle cells. Hypertension 1999; 33(4): 943–8PubMedCrossRef
95.
go back to reference Yoshizumi M, Perrella MA, Burnett Jr JC, et al. Tumour necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73(1): 205–9PubMedCrossRef Yoshizumi M, Perrella MA, Burnett Jr JC, et al. Tumour necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73(1): 205–9PubMedCrossRef
96.
go back to reference Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation. Am J Physiol 1994; 266 (6 Pt 2): H2535–41PubMed Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-alpha in vivo depresses endothelium-dependent relaxation. Am J Physiol 1994; 266 (6 Pt 2): H2535–41PubMed
97.
go back to reference Nakamura M, Yoshida H, Arakawa N, et al. Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 2000; 36(4): 487–92PubMedCrossRef Nakamura M, Yoshida H, Arakawa N, et al. Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 2000; 36(4): 487–92PubMedCrossRef
98.
go back to reference Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103(13): 1813–8PubMedCrossRef Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 2001; 103(13): 1813–8PubMedCrossRef
100.
go back to reference Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a dis- ease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40(11): 1286–92PubMedCrossRef Pickup JC, Mattock MB, Chusney GD, et al. NIDDM as a dis- ease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997; 40(11): 1286–92PubMedCrossRef
101.
go back to reference Margaglione M, Cappucci G, Colaizzo D, et al. C-reactive protein in offspring is associated with the occurrence of myocardial infarction in first-degree relatives. Arterioscler Thromb Vasc Biol 2000; 20(1): 198–203PubMedCrossRef Margaglione M, Cappucci G, Colaizzo D, et al. C-reactive protein in offspring is associated with the occurrence of myocardial infarction in first-degree relatives. Arterioscler Thromb Vasc Biol 2000; 20(1): 198–203PubMedCrossRef
102.
go back to reference Fichtischerer S, Rosenberger G, Walter DH, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000; 102(9): 1000–6CrossRef Fichtischerer S, Rosenberger G, Walter DH, et al. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000; 102(9): 1000–6CrossRef
103.
go back to reference Neve BP, Corseaux D, Chinetti G, et al. PPARalpha Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation 2001; 103(2): 207–12PubMedCrossRef Neve BP, Corseaux D, Chinetti G, et al. PPARalpha Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation 2001; 103(2): 207–12PubMedCrossRef
104.
go back to reference Marx N, Mackman N, Schonbeck U, et al. PPARalpha Activators Inhibit Tissue Factor Expression and Activity in Human Monocytes. Circulation 2001; 103(2): 213–9PubMedCrossRef Marx N, Mackman N, Schonbeck U, et al. PPARalpha Activators Inhibit Tissue Factor Expression and Activity in Human Monocytes. Circulation 2001; 103(2): 213–9PubMedCrossRef
105.
go back to reference Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101(3): 235–8PubMedCrossRef Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101(3): 235–8PubMedCrossRef
106.
go back to reference Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef
107.
go back to reference Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104PubMedCrossRef Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104PubMedCrossRef
108.
go back to reference Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6PubMedCrossRef Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6PubMedCrossRef
109.
go back to reference Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93(2): 229–40PubMedCrossRef Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93(2): 229–40PubMedCrossRef
110.
go back to reference Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001; 7(1): 48–52PubMedCrossRef Chawla A, Barak Y, Nagy L, et al. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001; 7(1): 48–52PubMedCrossRef
111.
go back to reference Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23PubMedCrossRef Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23PubMedCrossRef
112.
go back to reference Thieringer R, Fenyk-Melody JE, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 2000; 164(2): 1046–54PubMed Thieringer R, Fenyk-Melody JE, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 2000; 164(2): 1046–54PubMed
113.
go back to reference Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend orfoe? Curr Opin Lipidol 2001; 12(5): 519–27PubMedCrossRef Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend orfoe? Curr Opin Lipidol 2001; 12(5): 519–27PubMedCrossRef
114.
go back to reference Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523–31PubMedCrossRef Li AC, Brown KK, Silvestre MJ, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4): 523–31PubMedCrossRef
115.
go back to reference Abumrad N, Harmon C, Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 1998; 39(12): 2309–18PubMed Abumrad N, Harmon C, Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 1998; 39(12): 2309–18PubMed
116.
go back to reference Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–56PubMedCrossRef Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–56PubMedCrossRef
117.
go back to reference Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPARgamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7(1): 53–8PubMedCrossRef Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPARgamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7(1): 53–8PubMedCrossRef
118.
go back to reference Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 2001; 12(5): 511–8PubMedCrossRef Plutzky J. Peroxisome proliferator-activated receptors in endothelial cell biology. Curr Opin Lipidol 2001; 12(5): 511–8PubMedCrossRef
119.
120.
go back to reference Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000; 87(7): 596–602PubMedCrossRef Takano H, Nagai T, Asakawa M, et al. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000; 87(7): 596–602PubMedCrossRef
121.
go back to reference Ginsberg HN, Huang LS. The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 2000; 7(5): 325–31PubMed Ginsberg HN, Huang LS. The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis. J Cardiovasc Risk 2000; 7(5): 325–31PubMed
122.
go back to reference Kraegen EW, Cooney GJ, Ye J, et al. Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp Clin Endocrinol Diabetes 2001; 109(4): S516–26PubMedCrossRef Kraegen EW, Cooney GJ, Ye J, et al. Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp Clin Endocrinol Diabetes 2001; 109(4): S516–26PubMedCrossRef
123.
go back to reference Fontbonne A, Eschwege E, Cambien F, et al. Hyper-triglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes: results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32(5): 300–4PubMedCrossRef Fontbonne A, Eschwege E, Cambien F, et al. Hyper-triglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes: results from the 11-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32(5): 300–4PubMedCrossRef
124.
go back to reference Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88 (4 Pt 1): 1421–30PubMedCrossRef Laakso M, Lehto S, Penttila I, et al. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin-dependent diabetes. Circulation 1993; 88 (4 Pt 1): 1421–30PubMedCrossRef
125.
go back to reference Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350 Suppl. 1: SI20–3PubMed Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 1997; 350 Suppl. 1: SI20–3PubMed
126.
go back to reference Yamasaki Y, Kawamori R, Wasada T, et al. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. AD-4833 Glucose Clamp Study Group, Japan. Tohoku J Exp Med 1997; 183(3): 173–83PubMedCrossRef Yamasaki Y, Kawamori R, Wasada T, et al. Pioglitazone (AD-4833) ameliorates insulin resistance in patients with NIDDM. AD-4833 Glucose Clamp Study Group, Japan. Tohoku J Exp Med 1997; 183(3): 173–83PubMedCrossRef
127.
go back to reference Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12(5): 413–23PubMedCrossRef Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12(5): 413–23PubMedCrossRef
128.
go back to reference Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9PubMed Gegick CG, Altheimer MD. Comparison of effects of thiazolidinediones on cardiovascular risk factors: observations from a clinical practice. Endocr Pract 2001; 7(3): 162–9PubMed
129.
go back to reference Auwerx J, Schoonjans K, Fruchart JC, et al. Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 1996; 3(2): 81–9PubMed Auwerx J, Schoonjans K, Fruchart JC, et al. Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 1996; 3(2): 81–9PubMed
130.
go back to reference Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32PubMedCrossRef Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32PubMedCrossRef
131.
go back to reference Boyle PJ, King AB, Olansky L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24(3): 378–96PubMedCrossRef Boyle PJ, King AB, Olansky L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24(3): 378–96PubMedCrossRef
132.
go back to reference Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25(4): 708–11PubMedCrossRef Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25(4): 708–11PubMedCrossRef
133.
go back to reference Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21(5): 796–9PubMedCrossRef Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21(5): 796–9PubMedCrossRef
134.
go back to reference Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129(2): 162–3PubMed Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129(2): 162–3PubMed
135.
go back to reference Cominacini L, Young MM, Capriati A, et al. Troglitazone increases the resistance of low density lipoprotein to oxidation in healthy volunteers. Diabetologia 1997; 40(10): 1211–8PubMedCrossRef Cominacini L, Young MM, Capriati A, et al. Troglitazone increases the resistance of low density lipoprotein to oxidation in healthy volunteers. Diabetologia 1997; 40(10): 1211–8PubMedCrossRef
136.
go back to reference Cominacini L, Garbin U, Fratta PA, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47(1): 130–3PubMedCrossRef Cominacini L, Garbin U, Fratta PA, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47(1): 130–3PubMedCrossRef
137.
go back to reference Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7PubMedCrossRef
138.
go back to reference Mimura K, Umeda F, Hiramatsu S, et al. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabetes Med 1994; 11(7): 685–91CrossRef Mimura K, Umeda F, Hiramatsu S, et al. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabetes Med 1994; 11(7): 685–91CrossRef
139.
go back to reference Colca JR, Dailey CF, Palazuk BJ, et al. Pioglitazone hydrochloride inhibits cholesterol absorption and lowers plasma cholesterol concentrations in cholesterol-fed rats. Diabetes 1991; 40(12): 1669–74PubMedCrossRef Colca JR, Dailey CF, Palazuk BJ, et al. Pioglitazone hydrochloride inhibits cholesterol absorption and lowers plasma cholesterol concentrations in cholesterol-fed rats. Diabetes 1991; 40(12): 1669–74PubMedCrossRef
140.
go back to reference Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20PubMedCrossRef Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20PubMedCrossRef
141.
go back to reference Sung BH, Izzo JL, Dandona P, et al. Vasodilatory effects of troglitazone improve blood pressure at rest and during mental stress in type 2 diabetes mellitus. Hypertension 1999; 34(1): 83–8PubMedCrossRef Sung BH, Izzo JL, Dandona P, et al. Vasodilatory effects of troglitazone improve blood pressure at rest and during mental stress in type 2 diabetes mellitus. Hypertension 1999; 34(1): 83–8PubMedCrossRef
142.
go back to reference Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997; 46(3): 433–9PubMedCrossRef Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes 1997; 46(3): 433–9PubMedCrossRef
143.
go back to reference Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41(5): 569–76PubMedCrossRef Tack CJ, Ong MK, Lutterman JA, et al. Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998; 41(5): 569–76PubMedCrossRef
144.
go back to reference Kaufman LN, Peterson MM, DeGrange LM. Pioglitazone attenuates diet-induced hypertension in rats. Metabolism 1995; 44(9): 1105–9PubMedCrossRef Kaufman LN, Peterson MM, DeGrange LM. Pioglitazone attenuates diet-induced hypertension in rats. Metabolism 1995; 44(9): 1105–9PubMedCrossRef
145.
go back to reference Grinsell JW, Lardinois CK, Swislocki A, et al. Pioglitazone attenuates basal and postprandial insulin concentrations and blood pressure in the spontaneously hypertensive rat. Am J Hypertens 2000; 13 (4 Pt 1): 370–5PubMedCrossRef Grinsell JW, Lardinois CK, Swislocki A, et al. Pioglitazone attenuates basal and postprandial insulin concentrations and blood pressure in the spontaneously hypertensive rat. Am J Hypertens 2000; 13 (4 Pt 1): 370–5PubMedCrossRef
146.
go back to reference Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48(7): 1448–53PubMedCrossRef Walker AB, Chattington PD, Buckingham RE, et al. The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999; 48(7): 1448–53PubMedCrossRef
147.
go back to reference Zhang HY, Reddy SR, Kotchen TA. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24(1): 106–10PubMedCrossRef Zhang HY, Reddy SR, Kotchen TA. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension 1994; 24(1): 106–10PubMedCrossRef
148.
go back to reference Pershadsingh HA, Szollosi J, Benson S, et al. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993; 21 (6 Pt 2): 1020–3PubMedCrossRef Pershadsingh HA, Szollosi J, Benson S, et al. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension 1993; 21 (6 Pt 2): 1020–3PubMedCrossRef
149.
go back to reference Knock GA, Mishra SK, Aaronson PI. Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur J Pharmacol 1999; 368(1): 103–9PubMedCrossRef Knock GA, Mishra SK, Aaronson PI. Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. Eur J Pharmacol 1999; 368(1): 103–9PubMedCrossRef
150.
go back to reference Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98(8): 1897–905PubMedCrossRef Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98(8): 1897–905PubMedCrossRef
151.
go back to reference Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83(5): 1818–20PubMedCrossRef Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83(5): 1818–20PubMedCrossRef
152.
go back to reference Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36(5): 1529–35PubMedCrossRef Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36(5): 1529–35PubMedCrossRef
153.
go back to reference Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6PubMedCrossRef Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6PubMedCrossRef
154.
go back to reference Igarashi M, Takeda Y, Ishibashi N, et al. Pioglitazone reduces smooth muscle cell density of rat carotid arterial intima induced by balloon catheterization. Horm Metab Res 1997; 29(9): 444–9PubMedCrossRef Igarashi M, Takeda Y, Ishibashi N, et al. Pioglitazone reduces smooth muscle cell density of rat carotid arterial intima induced by balloon catheterization. Horm Metab Res 1997; 29(9): 444–9PubMedCrossRef
155.
go back to reference Yoshimoto T, Naruse M, Shizume H, et al. Vasculo-protective effects of insulin sensitizing agent pioglitazone in neointimal thickening and hypertensive vascular hypertrophy. Atherosclerosis 1999; 145(2): 333–40PubMedCrossRef Yoshimoto T, Naruse M, Shizume H, et al. Vasculo-protective effects of insulin sensitizing agent pioglitazone in neointimal thickening and hypertensive vascular hypertrophy. Atherosclerosis 1999; 145(2): 333–40PubMedCrossRef
156.
go back to reference Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5): 798–806PubMedCrossRef Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5): 798–806PubMedCrossRef
157.
go back to reference Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 1996; 93(10): 1809–17PubMedCrossRef Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 1996; 93(10): 1809–17PubMedCrossRef
158.
go back to reference Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabet Complications 1998; 12(4): 181–6CrossRef Fonseca VA, Reynolds T, Hemphill D, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabet Complications 1998; 12(4): 181–6CrossRef
159.
go back to reference Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun 1999; 258(2): 431–5PubMedCrossRef Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: A possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun 1999; 258(2): 431–5PubMedCrossRef
160.
go back to reference Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med 1998; 338(13): 861–6PubMedCrossRef Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med 1998; 338(13): 861–6PubMedCrossRef
161.
go back to reference Pickavance L, Widdowson PS, King P, et al. The development of overt diabetes in young Zucker Diabetic Fatty (ZDF) rats and the effects of chronic MCC-555 treatment. Br J Pharmacol 1998; 125(4): 767–70PubMedCrossRef Pickavance L, Widdowson PS, King P, et al. The development of overt diabetes in young Zucker Diabetic Fatty (ZDF) rats and the effects of chronic MCC-555 treatment. Br J Pharmacol 1998; 125(4): 767–70PubMedCrossRef
162.
go back to reference Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 1996; 137(11): 4706–12PubMedCrossRef Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 1996; 137(11): 4706–12PubMedCrossRef
163.
go back to reference Akazawa S, Sun F, Ito M, et al. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 2000; 23(8): 1067–71PubMedCrossRef Akazawa S, Sun F, Ito M, et al. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 2000; 23(8): 1067–71PubMedCrossRef
164.
go back to reference Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22(6): 908–12PubMedCrossRef Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22(6): 908–12PubMedCrossRef
165.
go back to reference Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288–93PubMedCrossRef Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288–93PubMedCrossRef
166.
go back to reference Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9PubMedCrossRef Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9PubMedCrossRef
167.
go back to reference Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132(2): 118–21PubMed Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132(2): 118–21PubMed
168.
go back to reference Al Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132(2): 121–4 Al Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone. A case report. Ann Intern Med 2000; 132(2): 121–4
169.
go back to reference Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815–21PubMedCrossRef Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25(5): 815–21PubMedCrossRef
Metadata
Title
Metabolic and Additional Vascular Effects of Thiazolidinediones
Authors
Dr Fabrice M. A. C Martens
Frank L. J. Visseren
Jacinthe Lemay
Eelco J. P. de Koning
Ton J. Rabelink
Publication date
01-07-2002
Publisher
Springer International Publishing
Published in
Drugs / Issue 10/2002
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200262100-00004

Other articles of this Issue 10/2002

Drugs 10/2002 Go to the issue

Adis Drug Evaluation

Esomeprazole

Adis Drug Evaluation

Rizatriptan