Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2014

Open Access 01-12-2014 | Research article

Mesenchymal stem cells overexpressing Ihh promote bone repair

Authors: Shasha Zou, Tingting Chen, Yanan Wang, Ruhui Tian, Lingling Zhang, Pingping Song, Shi Yang, Yong Zhu, Xizhi Guo, Yiran Huang, Zheng Li, Lixin Kan, Hongliang Hu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2014

Login to get access

Abstract

Background

Indian hedgehog (Ihh) signaling pathway is known to play key roles in various aspects of normal endochondral bone development. This study tested the potential roles of high Ihh signaling in the context of injury-induced bone regeneration.

Methods

A rabbit tibia defect model was established to test the effects of the implant of Ihh/mesenchymal stem cells (MSCs)/scaffold complex. Computed tomography (CT), gross observation, and standard histological and immunohistological techniques were used to evaluate the effectiveness of the treatment. In vitro studies with MSCs and C3H10T1/2 cells were also employed to further understand the cellular and molecular mechanisms.

Results

We found that the implanted Ihh/MSCs/scaffold complex promoted bone repair. Consistently, in vitro study found that Ihh induced the upregulation of chondrocytic, osteogenic, and vascular cell markers, both in C3H10T1/2 cells and MSCs.

Conclusions

Our study has demonstrated that high Ihh signaling in a complex with MSCs enhanced bone regeneration effectively in a clinically relevant acute injury model. Even though the exact underlying mechanisms are still far from clear, our primary data suggested that enhanced chondrogenesis, osteogenesis, and angiogenesis of MSCs at least partially contribute to the process. This study not only has implications for basic research of MSCs and Ihh signaling pathway but also points to the possibility of direct application of this specific paradigm to clinical bone repair.
Appendix
Available only for authorised users
Literature
1.
go back to reference Giannoudis PV, Dinopoulos H, Tsiridis E: Bone substitutes: an update. Injury. 2005, 36 (Suppl 3): S20-S27. 10.1016/j.injury.2005.07.029. doi:10.1016/j.injury.2005.07.029CrossRefPubMed Giannoudis PV, Dinopoulos H, Tsiridis E: Bone substitutes: an update. Injury. 2005, 36 (Suppl 3): S20-S27. 10.1016/j.injury.2005.07.029. doi:10.1016/j.injury.2005.07.029CrossRefPubMed
2.
go back to reference Jager M, Westhoff B, Wild A, Krauspe R: [Bone harvesting from the iliac crest]. Orthopade. 2005, 34 (10): 976-982. 10.1007/s00132-005-0839-0. 984, 986-990, 992-974. doi:10.1007/s00132-005-0839-0CrossRefPubMed Jager M, Westhoff B, Wild A, Krauspe R: [Bone harvesting from the iliac crest]. Orthopade. 2005, 34 (10): 976-982. 10.1007/s00132-005-0839-0. 984, 986-990, 992-974. doi:10.1007/s00132-005-0839-0CrossRefPubMed
3.
go back to reference Myeroff C, Archdeacon M: Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011, 93 (23): 2227-2236. 10.2106/JBJS.J.01513. doi:10.2106/JBJS.J.01513CrossRefPubMed Myeroff C, Archdeacon M: Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011, 93 (23): 2227-2236. 10.2106/JBJS.J.01513. doi:10.2106/JBJS.J.01513CrossRefPubMed
4.
go back to reference Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ, Jenis LG, Tromanhauser SG: Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J. 2009, 9 (11): 886-892. 10.1016/j.spinee.2009.05.006. doi:10.1016/j.spinee.2009.05.006CrossRefPubMed Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ, Jenis LG, Tromanhauser SG: Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J. 2009, 9 (11): 886-892. 10.1016/j.spinee.2009.05.006. doi:10.1016/j.spinee.2009.05.006CrossRefPubMed
5.
go back to reference Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A: Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng B Rev. 2012, 18 (5): 363-382. 10.1089/ten.teb.2012.0012. doi:10.1089/ten.TEB.2012.0012CrossRef Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A: Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng B Rev. 2012, 18 (5): 363-382. 10.1089/ten.teb.2012.0012. doi:10.1089/ten.TEB.2012.0012CrossRef
6.
go back to reference Grabowski G, Cornett CA: Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013, 21 (1): 51-60. 10.5435/JAAOS-21-01-51. doi:10.5435/JAAOS-21-01-51CrossRefPubMed Grabowski G, Cornett CA: Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg. 2013, 21 (1): 51-60. 10.5435/JAAOS-21-01-51. doi:10.5435/JAAOS-21-01-51CrossRefPubMed
7.
go back to reference Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH, Koh YH: Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2013, 24 (3): 773-782. 10.1007/s10856-012-4822-0. doi:10.1007/s10856-012-4822-0CrossRefPubMed Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH, Koh YH: Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2013, 24 (3): 773-782. 10.1007/s10856-012-4822-0. doi:10.1007/s10856-012-4822-0CrossRefPubMed
8.
go back to reference Santos TC, Morton TJ, Moritz M, Pfeifer S, Reise K, Marques AP, Castro AG, Reis RL, van Griensven M: Vascular endothelial growth factor and fibroblast growth factor-2 incorporation in starch-based bone tissue-engineered constructs promote the in vivo expression of neovascularization mediators. Tissue Eng A. 2013, 19 (7–8): 834-848. 10.1089/ten.tea.2010.0741. doi:10.1089/ten.TEA.2010.0741CrossRef Santos TC, Morton TJ, Moritz M, Pfeifer S, Reise K, Marques AP, Castro AG, Reis RL, van Griensven M: Vascular endothelial growth factor and fibroblast growth factor-2 incorporation in starch-based bone tissue-engineered constructs promote the in vivo expression of neovascularization mediators. Tissue Eng A. 2013, 19 (7–8): 834-848. 10.1089/ten.tea.2010.0741. doi:10.1089/ten.TEA.2010.0741CrossRef
9.
go back to reference Chau M, Forcinito P, Andrade AC, Hegde A, Ahn S, Lui JC, Baron J, Nilsson O: Organization of the Indian hedgehog-parathyroid hormone-related protein system in the postnatal growth plate. J Mol Endocrinol. 2011, 47 (1): 99-107. 10.1530/JME-10-0177. doi:10.1530/JME-10-0177CrossRefPubMed Chau M, Forcinito P, Andrade AC, Hegde A, Ahn S, Lui JC, Baron J, Nilsson O: Organization of the Indian hedgehog-parathyroid hormone-related protein system in the postnatal growth plate. J Mol Endocrinol. 2011, 47 (1): 99-107. 10.1530/JME-10-0177. doi:10.1530/JME-10-0177CrossRefPubMed
10.
go back to reference Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q: Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. J Surg Res. 2012, 176 (1): e13-e20. 10.1016/j.jss.2011.12.011. doi:10.1016/j.jss.2011.12.011CrossRefPubMed Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q: Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. J Surg Res. 2012, 176 (1): e13-e20. 10.1016/j.jss.2011.12.011. doi:10.1016/j.jss.2011.12.011CrossRefPubMed
11.
go back to reference Ohba S, Hojo H, Chung UI: Bioactive factors for tissue regeneration: state of the art. Muscles Ligaments Tendons J. 2012, 2 (3): 193-203.PubMedCentralPubMed Ohba S, Hojo H, Chung UI: Bioactive factors for tissue regeneration: state of the art. Muscles Ligaments Tendons J. 2012, 2 (3): 193-203.PubMedCentralPubMed
12.
go back to reference Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR: Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am. 2013, 95 (8): 694-701. 10.2106/JBJS.L.00285. doi:10.2106/JBJS.L.00285PubMedCentralCrossRefPubMed Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR: Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am. 2013, 95 (8): 694-701. 10.2106/JBJS.L.00285. doi:10.2106/JBJS.L.00285PubMedCentralCrossRefPubMed
13.
go back to reference Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA: Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res. 2014, 32 (4): 581-586. 10.1002/jor.22562. doi:10.1002/jor.22562CrossRefPubMed Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA: Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res. 2014, 32 (4): 581-586. 10.1002/jor.22562. doi:10.1002/jor.22562CrossRefPubMed
14.
go back to reference Lai LP, Mitchell J: Indian hedgehog: its roles and regulation in endochondral bone development. J Cell Biochem. 2005, 96 (6): 1163-1173. 10.1002/jcb.20635. doi:10.1002/jcb.20635CrossRefPubMed Lai LP, Mitchell J: Indian hedgehog: its roles and regulation in endochondral bone development. J Cell Biochem. 2005, 96 (6): 1163-1173. 10.1002/jcb.20635. doi:10.1002/jcb.20635CrossRefPubMed
15.
go back to reference Joeng KS, Long F: The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development. 2009, 136 (24): 4177-4185. 10.1242/dev.041624. doi:10.1242/dev.041624PubMedCentralCrossRefPubMed Joeng KS, Long F: The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development. 2009, 136 (24): 4177-4185. 10.1242/dev.041624. doi:10.1242/dev.041624PubMedCentralCrossRefPubMed
16.
go back to reference Zou SS, Li Z, Hu HL: Desert hedgehog regulates the proliferation and differentiation of Leydig cells: an update. Zhonghua Nan Ke Xue. 2012, 18 (2): 172-175.PubMed Zou SS, Li Z, Hu HL: Desert hedgehog regulates the proliferation and differentiation of Leydig cells: an update. Zhonghua Nan Ke Xue. 2012, 18 (2): 172-175.PubMed
17.
go back to reference Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev. 2008, 22 (18): 2454-2472. 10.1101/gad.1693608. doi:10.1101/gad.1693608CrossRefPubMed Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev. 2008, 22 (18): 2454-2472. 10.1101/gad.1693608. doi:10.1101/gad.1693608CrossRefPubMed
18.
go back to reference Delaine-Smith RM, Reilly GC: Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012, 2 (3): 169-180.PubMedCentralPubMed Delaine-Smith RM, Reilly GC: Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012, 2 (3): 169-180.PubMedCentralPubMed
19.
go back to reference Raggi C, Berardi AC: Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012, 2 (3): 239-242.PubMedCentralPubMed Raggi C, Berardi AC: Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012, 2 (3): 239-242.PubMedCentralPubMed
20.
go back to reference Ory DS, Neugeboren BA, Mulligan RC: A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A. 1996, 93 (21): 11400-11406. 10.1073/pnas.93.21.11400.PubMedCentralCrossRefPubMed Ory DS, Neugeboren BA, Mulligan RC: A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A. 1996, 93 (21): 11400-11406. 10.1073/pnas.93.21.11400.PubMedCentralCrossRefPubMed
21.
go back to reference Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB: Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng B Rev. 2010, 16 (2): 263-271. 10.1089/ten.teb.2009.0224. doi:10.1089/ten.TEB.2009.0224CrossRef Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB: Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng B Rev. 2010, 16 (2): 263-271. 10.1089/ten.teb.2009.0224. doi:10.1089/ten.TEB.2009.0224CrossRef
22.
go back to reference Toombs JP, Wallace LJ, Bjorling DE, Rowland GN: Evaluation of key's hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res. 1985, 46 (2): 513-518.PubMed Toombs JP, Wallace LJ, Bjorling DE, Rowland GN: Evaluation of key's hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res. 1985, 46 (2): 513-518.PubMed
23.
go back to reference Zhang W, Tsurushima H, Oyane A, Yazaki Y, Sogo Y, Ito A, Matsumura A: BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J Biomed Sci. 2011, 18: 62-10.1186/1423-0127-18-62. doi:10.1186/1423-0127-18-62PubMedCentralCrossRefPubMed Zhang W, Tsurushima H, Oyane A, Yazaki Y, Sogo Y, Ito A, Matsumura A: BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J Biomed Sci. 2011, 18: 62-10.1186/1423-0127-18-62. doi:10.1186/1423-0127-18-62PubMedCentralCrossRefPubMed
24.
go back to reference Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A: BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001, 128 (22): 4523-4534.PubMed Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A: BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001, 128 (22): 4523-4534.PubMed
25.
go back to reference Kronenberg HM: PTHrP and skeletal development. Ann N Y Acad Sci. 2006, 1068: 1-13. 10.1196/annals.1346.002. doi:10.1196/annals.1346.002CrossRefPubMed Kronenberg HM: PTHrP and skeletal development. Ann N Y Acad Sci. 2006, 1068: 1-13. 10.1196/annals.1346.002. doi:10.1196/annals.1346.002CrossRefPubMed
26.
go back to reference Murakami S, Noda M: Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif Tissue Int. 2000, 66 (4): 272-276. 10.1007/PL00005843.CrossRefPubMed Murakami S, Noda M: Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif Tissue Int. 2000, 66 (4): 272-276. 10.1007/PL00005843.CrossRefPubMed
27.
go back to reference Fei Y, Hurley MM: Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol. 2012, 227 (11): 3539-3545. 10.1002/jcp.24075. doi:10.1002/jcp.24075PubMedCentralCrossRefPubMed Fei Y, Hurley MM: Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol. 2012, 227 (11): 3539-3545. 10.1002/jcp.24075. doi:10.1002/jcp.24075PubMedCentralCrossRefPubMed
28.
go back to reference Duench K, Franz-Odendaal TA: BMP and Hedgehog signaling during the development of scleral ossicles. Dev Biol. 2012, 365 (1): 251-258. 10.1016/j.ydbio.2012.02.016. doi:10.1016/j.ydbio.2012.02.016CrossRefPubMed Duench K, Franz-Odendaal TA: BMP and Hedgehog signaling during the development of scleral ossicles. Dev Biol. 2012, 365 (1): 251-258. 10.1016/j.ydbio.2012.02.016. doi:10.1016/j.ydbio.2012.02.016CrossRefPubMed
Metadata
Title
Mesenchymal stem cells overexpressing Ihh promote bone repair
Authors
Shasha Zou
Tingting Chen
Yanan Wang
Ruhui Tian
Lingling Zhang
Pingping Song
Shi Yang
Yong Zhu
Xizhi Guo
Yiran Huang
Zheng Li
Lixin Kan
Hongliang Hu
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2014
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-014-0102-7

Other articles of this Issue 1/2014

Journal of Orthopaedic Surgery and Research 1/2014 Go to the issue