Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2009

Open Access 01-12-2009 | Review

Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

Authors: Renee Dufault, Roseanne Schnoll, Walter J Lukiw, Blaise LeBlanc, Charles Cornett, Lyn Patrick, David Wallinga, Steven G Gilbert, Raquel Crider

Published in: Behavioral and Brain Functions | Issue 1/2009

Login to get access

Abstract

Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dauncey MJ, Bicknell RJ: Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease later in life. Nutr Res Rev. 1999, 12: 231-253.PubMedCrossRef Dauncey MJ, Bicknell RJ: Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease later in life. Nutr Res Rev. 1999, 12: 231-253.PubMedCrossRef
2.
go back to reference Dong WK, Greenough WT: Plasticity of nonneuronal brain tissue: roles in developmental disorders. Ment Retard Dev Disabil Res Rev. 2004, 10: 85-90.PubMedCrossRef Dong WK, Greenough WT: Plasticity of nonneuronal brain tissue: roles in developmental disorders. Ment Retard Dev Disabil Res Rev. 2004, 10: 85-90.PubMedCrossRef
4.
go back to reference Tsanov M, Manahan-Vaughn D: Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist. 2008, 14 (6): 584-597.PubMedCrossRef Tsanov M, Manahan-Vaughn D: Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist. 2008, 14 (6): 584-597.PubMedCrossRef
5.
go back to reference Howland JG, Wang YT: Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008, 169: 145-158.PubMedCrossRef Howland JG, Wang YT: Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res. 2008, 169: 145-158.PubMedCrossRef
6.
go back to reference Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC: Neurotoxicants, micronutrients, and social environments. PSPI. 2005, 6 (3): 57-121.PubMed Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC: Neurotoxicants, micronutrients, and social environments. PSPI. 2005, 6 (3): 57-121.PubMed
7.
go back to reference Roman GC: Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J Neurol Sci. 2007, 262: 15-26.PubMedCrossRef Roman GC: Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J Neurol Sci. 2007, 262: 15-26.PubMedCrossRef
8.
go back to reference Morley JE, Gordon J, Hershman JM: Zinc deficiency, chronic starvation, and hypothalamic-pituitary-thyroid function. Am J Clin Nutr. 1980, 33 (8): 1767-70.PubMed Morley JE, Gordon J, Hershman JM: Zinc deficiency, chronic starvation, and hypothalamic-pituitary-thyroid function. Am J Clin Nutr. 1980, 33 (8): 1767-70.PubMed
9.
go back to reference Ivaturi R, Kies C: Mineral balances in humans as affected by fructose, high-fructose corn syrup, and sucrose. Plant Foods for Hum Nutr. 1992, 42 (2): 143-151.CrossRef Ivaturi R, Kies C: Mineral balances in humans as affected by fructose, high-fructose corn syrup, and sucrose. Plant Foods for Hum Nutr. 1992, 42 (2): 143-151.CrossRef
10.
go back to reference Ward NI, Soulsbury K, Zettel VH, Colquhoun ID, Bunday S, Barnes B: The influence of the chemical additive tartrazine on the zinc status of hyperactive children-a double-blind placebo-controlled study. J Nutr Med. 1990, 1: 51-57.CrossRef Ward NI, Soulsbury K, Zettel VH, Colquhoun ID, Bunday S, Barnes B: The influence of the chemical additive tartrazine on the zinc status of hyperactive children-a double-blind placebo-controlled study. J Nutr Med. 1990, 1: 51-57.CrossRef
11.
go back to reference Ward NI: Assessment of chemical factors in relation to child hyperactivity. J Nutr Environ Med. 1997, 7: 333-342.CrossRef Ward NI: Assessment of chemical factors in relation to child hyperactivity. J Nutr Environ Med. 1997, 7: 333-342.CrossRef
12.
go back to reference Neggers YH, Cutler GR, Action RT, Alvarej JA, Bonner JL, Goldenberg RL, Go RCP, Roseman JM: A positive association between maternal serum zinc concentration and birth weight. Am J Clin Nutr. 1990, 51: 678-684.PubMed Neggers YH, Cutler GR, Action RT, Alvarej JA, Bonner JL, Goldenberg RL, Go RCP, Roseman JM: A positive association between maternal serum zinc concentration and birth weight. Am J Clin Nutr. 1990, 51: 678-684.PubMed
13.
go back to reference Scholl TO, Hediger ML, Schall JI, Fischer RL, Khoo CS: Low zinc intake during pregnancy:its association with preterm and very preterm delivery. Am J Epidemiol. 1993, 137 (10): 1115-1124.PubMed Scholl TO, Hediger ML, Schall JI, Fischer RL, Khoo CS: Low zinc intake during pregnancy:its association with preterm and very preterm delivery. Am J Epidemiol. 1993, 137 (10): 1115-1124.PubMed
14.
go back to reference Schendel D, Karapurkar Bhasin T: Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics. 2008, 121 (6): 1155-1164.PubMedCrossRef Schendel D, Karapurkar Bhasin T: Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics. 2008, 121 (6): 1155-1164.PubMedCrossRef
15.
go back to reference Sandstead HH: Causes of zinc and iron deficiencies and their effects on the brain. J Nutr. 2000, 130: 347-349. Sandstead HH: Causes of zinc and iron deficiencies and their effects on the brain. J Nutr. 2000, 130: 347-349.
17.
go back to reference Clarkson TW, Strain JJ: Nutritional factors may modify the toxic action of methylmercury in fish-eating populations. J Nutr. 2003, 133 (Suppl 1): 1539-1543. Clarkson TW, Strain JJ: Nutritional factors may modify the toxic action of methylmercury in fish-eating populations. J Nutr. 2003, 133 (Suppl 1): 1539-1543.
18.
go back to reference Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT: Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998, 106 (Suppl 1): 203-216.PubMedCentralPubMedCrossRef Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT: Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998, 106 (Suppl 1): 203-216.PubMedCentralPubMedCrossRef
20.
go back to reference Palmer R, Blanchard S, Stein Z, Mandell D, Miller C: Environmental mercury release, special education rates, and autism disorder: an ecological study of texas. Health Place. 2006, 12: 203-209.PubMedCrossRef Palmer R, Blanchard S, Stein Z, Mandell D, Miller C: Environmental mercury release, special education rates, and autism disorder: an ecological study of texas. Health Place. 2006, 12: 203-209.PubMedCrossRef
21.
go back to reference Palmer R, Blanchard S, Wood R: Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place. 2008 Palmer R, Blanchard S, Wood R: Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place. 2008
25.
go back to reference Neculita CM, Zagury GJ, Deschenes L: Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual. 2005, 34: 255-262.PubMed Neculita CM, Zagury GJ, Deschenes L: Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. J Environ Qual. 2005, 34: 255-262.PubMed
30.
go back to reference Van Loon JC: Agricultural use of sewage treatment plant sludges, a potential source of mercury contamination. Environ Lett. 1973, 4: 259-265.PubMedCrossRef Van Loon JC: Agricultural use of sewage treatment plant sludges, a potential source of mercury contamination. Environ Lett. 1973, 4: 259-265.PubMedCrossRef
31.
go back to reference Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z: The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect. 2006, 114 (2): 297-301.PubMedCentralPubMedCrossRef Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z: The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect. 2006, 114 (2): 297-301.PubMedCentralPubMedCrossRef
32.
go back to reference Goldman LR, Shannon MW: American academy of pediatrics technical report: mercury in the environment: implications for pediatricians. Pediatrics. 2001, 108 (1): 197-205.PubMedCrossRef Goldman LR, Shannon MW: American academy of pediatrics technical report: mercury in the environment: implications for pediatricians. Pediatrics. 2001, 108 (1): 197-205.PubMedCrossRef
35.
go back to reference McDowell MA, Dillon CF, Osterloh J, Bolger PM, Pellizzari E, Fernando R, Montes de Oca R, Schober SE, Sinks T, Jones RL, Mahaffey KR: Hair mercury levels in U.S. children and women of childbearing age: reference range data from NHANES 1999-2000. Environ Health Perspect. 2004, 112 (11): 1165-1171.PubMedCentralPubMedCrossRef McDowell MA, Dillon CF, Osterloh J, Bolger PM, Pellizzari E, Fernando R, Montes de Oca R, Schober SE, Sinks T, Jones RL, Mahaffey KR: Hair mercury levels in U.S. children and women of childbearing age: reference range data from NHANES 1999-2000. Environ Health Perspect. 2004, 112 (11): 1165-1171.PubMedCentralPubMedCrossRef
36.
go back to reference Hightower J, O'Hare A, Hernandez G: Blood mercury reporting in NHANES: identifying asian, pacific islander, native american, and multiracial groups. Environ Health Perspect. 2006, 114 (2): 173-175.PubMedCentralPubMedCrossRef Hightower J, O'Hare A, Hernandez G: Blood mercury reporting in NHANES: identifying asian, pacific islander, native american, and multiracial groups. Environ Health Perspect. 2006, 114 (2): 173-175.PubMedCentralPubMedCrossRef
37.
go back to reference Mahaffey KR, Clickner RP, Bodurow CC: Blood organic mercury and dietary mercury intake national health and nutrition examination survey, 1999 and 2000. Environ Health Perspect. 2004, 112 (5): 562-570.PubMedCentralPubMedCrossRef Mahaffey KR, Clickner RP, Bodurow CC: Blood organic mercury and dietary mercury intake national health and nutrition examination survey, 1999 and 2000. Environ Health Perspect. 2004, 112 (5): 562-570.PubMedCentralPubMedCrossRef
38.
go back to reference Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ: Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997, 19: 417-428.PubMedCrossRef Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sorensen N, Dahl R, Jorgensen PJ: Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol. 1997, 19: 417-428.PubMedCrossRef
39.
go back to reference Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson TW: Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment outcomes at 66 months of age in the Seychelles Child Development Study. JAMA. 1998, 280: 701-707.PubMedCrossRef Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y, Berlin M, Clarkson TW: Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment outcomes at 66 months of age in the Seychelles Child Development Study. JAMA. 1998, 280: 701-707.PubMedCrossRef
40.
go back to reference Raymond LJ, Ralston VC: Mercury: selenium interactions and health implications. Seychelles Medical and Dental Journal. 2004, 7 (Special 1): 72-77. Raymond LJ, Ralston VC: Mercury: selenium interactions and health implications. Seychelles Medical and Dental Journal. 2004, 7 (Special 1): 72-77.
41.
go back to reference Julshamn K, Anderson A, Ringdal O, Morkore J: Trace elements intake in the faroe islands - element levels in edible parts of pilot whales (globicephalus meleanus). Sci Total Environ. 1987, 65: 53-62.PubMedCrossRef Julshamn K, Anderson A, Ringdal O, Morkore J: Trace elements intake in the faroe islands - element levels in edible parts of pilot whales (globicephalus meleanus). Sci Total Environ. 1987, 65: 53-62.PubMedCrossRef
42.
go back to reference Lourdes MA, Culvin-Aralar A, Furness RW: Mercury and selenium interactions: a review. Ecotoxicol Environ Saf. 1991, 21: 348-364.CrossRef Lourdes MA, Culvin-Aralar A, Furness RW: Mercury and selenium interactions: a review. Ecotoxicol Environ Saf. 1991, 21: 348-364.CrossRef
43.
go back to reference Ganther HE: Selenium: relation to decreased toxicity of methylmercury in diets containing tuna. Science. 1972, 175: 1122-1124.PubMedCrossRef Ganther HE: Selenium: relation to decreased toxicity of methylmercury in diets containing tuna. Science. 1972, 175: 1122-1124.PubMedCrossRef
44.
go back to reference Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T: Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication. Environ Res. 1976, 12: 49-58.PubMedCrossRef Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T: Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication. Environ Res. 1976, 12: 49-58.PubMedCrossRef
45.
go back to reference Spiers R, Spiers M: Proceedings of Clerc 2nd Annual Symposium: 24 October 1998. 1998, University of California at Davis Spiers R, Spiers M: Proceedings of Clerc 2nd Annual Symposium: 24 October 1998. 1998, University of California at Davis
46.
go back to reference Vasconcellos M, Bode P, Paletti G: Determination of mercury and selenium in hair samples of brazilian Indian populations living in the amazon region by neutron activation analyses. Proceedings of the International Symposium on Trace Elements in Humans: New Perspectives, 3rd, 4-6 October 2001. Athens, Greece. 2001 Vasconcellos M, Bode P, Paletti G: Determination of mercury and selenium in hair samples of brazilian Indian populations living in the amazon region by neutron activation analyses. Proceedings of the International Symposium on Trace Elements in Humans: New Perspectives, 3rd, 4-6 October 2001. Athens, Greece. 2001
47.
go back to reference Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW: Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ Health Perspect. 2005, 113 (10): 1376-1380.PubMedCentralPubMedCrossRef Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW: Maternal fish consumption, hair mercury, and infant cognition in a U.S. cohort. Environ Health Perspect. 2005, 113 (10): 1376-1380.PubMedCentralPubMedCrossRef
51.
go back to reference Richardson AJ, Puri BK: A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuropsychopharmacol Biol Psychiatry. 2002, 26 (2): 233-239.PubMedCrossRef Richardson AJ, Puri BK: A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuropsychopharmacol Biol Psychiatry. 2002, 26 (2): 233-239.PubMedCrossRef
54.
go back to reference Lurgi Life Science GmbH: High fructose syrup production-process and economics. Proceedings of International Conference on Value-Added Products for the Sugar Industry. 1999, Baton Rouge, LA Lurgi Life Science GmbH: High fructose syrup production-process and economics. Proceedings of International Conference on Value-Added Products for the Sugar Industry. 1999, Baton Rouge, LA
55.
go back to reference Dufault R, LeBlanc B, Schnoll R, Cornett C, Schweitzer L, Wallinga D, Hightower J, Patrick L, Lukiw W: Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environ Health. 2009, 8: 2-PubMedCentralPubMedCrossRef Dufault R, LeBlanc B, Schnoll R, Cornett C, Schweitzer L, Wallinga D, Hightower J, Patrick L, Lukiw W: Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environ Health. 2009, 8: 2-PubMedCentralPubMedCrossRef
58.
go back to reference Newschaffer C, Falb M, Gurney J: National autism prevalence trends from united states special education data. Pediatrics. 2005, 115 (3): 277-282.CrossRef Newschaffer C, Falb M, Gurney J: National autism prevalence trends from united states special education data. Pediatrics. 2005, 115 (3): 277-282.CrossRef
60.
go back to reference Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A: Autism from 2 to 9 years of age. Arch Gen Psychiatry. 2006, 63: 694-701.PubMedCrossRef Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A: Autism from 2 to 9 years of age. Arch Gen Psychiatry. 2006, 63: 694-701.PubMedCrossRef
61.
go back to reference Walsh WJ, Usman A, Tarpey J: Disordered metal metabolism in a large autism population. Proceedings of the Amer Psych Assn; New Research: Abstract NR109; May 2001; New Orleans, LA. 2001 Walsh WJ, Usman A, Tarpey J: Disordered metal metabolism in a large autism population. Proceedings of the Amer Psych Assn; New Research: Abstract NR109; May 2001; New Orleans, LA. 2001
62.
go back to reference Faber S, Zinn GM, Kern JC, Kingston HM: The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009, 14 (3): 171-180.PubMedCrossRef Faber S, Zinn GM, Kern JC, Kingston HM: The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009, 14 (3): 171-180.PubMedCrossRef
63.
go back to reference Blaylock RL: A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med. 2009, 15 (1): 60-67.PubMed Blaylock RL: A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med. 2009, 15 (1): 60-67.PubMed
64.
go back to reference Minami T, Miyata E, Sakamoto Y, Yamazaki H, Ichida S: Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thiomerosal injection. Cell Biol Toxicol. 2009, Minami T, Miyata E, Sakamoto Y, Yamazaki H, Ichida S: Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thiomerosal injection. Cell Biol Toxicol. 2009,
65.
go back to reference Vruwink KG, Hurley LS, Gershwin ME, Keen CL: Gestational zinc deficiency amplifies the regulation of metallothionein induction in adult mice. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine. 1988, 188 (1): 30-34.CrossRef Vruwink KG, Hurley LS, Gershwin ME, Keen CL: Gestational zinc deficiency amplifies the regulation of metallothionein induction in adult mice. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine. 1988, 188 (1): 30-34.CrossRef
66.
go back to reference Geier D, Geier M: A prospective study of mercury toxicity biomarkers in autism spectrum disorders. J Toxicol EnvironHealth A. 2007, 70: 1723-1730. Geier D, Geier M: A prospective study of mercury toxicity biomarkers in autism spectrum disorders. J Toxicol EnvironHealth A. 2007, 70: 1723-1730.
67.
go back to reference Ladner L, Lindstrom L: Copper in society and the environment. 2nd revised edition. 1999, Environmental Research Group (MFG) Ladner L, Lindstrom L: Copper in society and the environment. 2nd revised edition. 1999, Environmental Research Group (MFG)
68.
go back to reference Olanow CW, Arendash GW: Metals and free radicals in neurodegeneration. Curr Opin Neurol. 1994, 7 (6): 548-558.PubMedCrossRef Olanow CW, Arendash GW: Metals and free radicals in neurodegeneration. Curr Opin Neurol. 1994, 7 (6): 548-558.PubMedCrossRef
69.
go back to reference Konofal E, Lecendreux M, Arnulf I, Mouren MC: Iron deficiency in children with attention-deficity/hyperactivity disorder. Arch Pediatr Adolesc Med. 2004, 158 (12): 1113-1115.PubMedCrossRef Konofal E, Lecendreux M, Arnulf I, Mouren MC: Iron deficiency in children with attention-deficity/hyperactivity disorder. Arch Pediatr Adolesc Med. 2004, 158 (12): 1113-1115.PubMedCrossRef
70.
go back to reference Starobrat-Hermelin B: The effect of deficiency of selected bioelements on hyperactivity in children with certain specified mental disorders. Ann Acad Med Stetin. 1998, 44: 297-314.PubMed Starobrat-Hermelin B: The effect of deficiency of selected bioelements on hyperactivity in children with certain specified mental disorders. Ann Acad Med Stetin. 1998, 44: 297-314.PubMed
71.
go back to reference McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteus L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J: Food additives and hyperactive behavior in 3-year-old and 8/9-year-old children in the community: a randomized, double-blinded placebo-controlled trial. Lancet. 2007, 370 (9598): 1560-1567.PubMedCrossRef McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteus L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J: Food additives and hyperactive behavior in 3-year-old and 8/9-year-old children in the community: a randomized, double-blinded placebo-controlled trial. Lancet. 2007, 370 (9598): 1560-1567.PubMedCrossRef
72.
go back to reference McGee R, Prior M, Williams S, Smart D, Sanson A: The long-term significance of teacher-rated hyperactivity and reading ability in childhood: findings from two longitudinal studies. J Child Psychol Psychiatry. 2002, 43: 1004-1017.PubMedCrossRef McGee R, Prior M, Williams S, Smart D, Sanson A: The long-term significance of teacher-rated hyperactivity and reading ability in childhood: findings from two longitudinal studies. J Child Psychol Psychiatry. 2002, 43: 1004-1017.PubMedCrossRef
73.
go back to reference Noseworthy MD, Bray TM: Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med. 2000, 223: 175-182.PubMedCrossRef Noseworthy MD, Bray TM: Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med. 2000, 223: 175-182.PubMedCrossRef
74.
go back to reference Molteni R, Barnard R, Ying Z, Roberts K, Gomez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002, 112 (4): 803-814.PubMedCrossRef Molteni R, Barnard R, Ying Z, Roberts K, Gomez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002, 112 (4): 803-814.PubMedCrossRef
75.
go back to reference Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N: Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2006, 30 (8): 1529-1531.PubMedCrossRef Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suzuki K, Minabe Y, Takei N, Iyo M, Mori N: Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2006, 30 (8): 1529-1531.PubMedCrossRef
76.
go back to reference Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK: Increased levels of plasma brain-derived neurotrophic factor in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008, 32 (8): 1824-1828.PubMedCrossRef Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK: Increased levels of plasma brain-derived neurotrophic factor in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008, 32 (8): 1824-1828.PubMedCrossRef
77.
go back to reference Kidd PM: Autism, an extreme challenge to integrative medicine. Part 1:the knowledge base. Altern Med Rev. 2002, 7 (4): 292-316.PubMed Kidd PM: Autism, an extreme challenge to integrative medicine. Part 1:the knowledge base. Altern Med Rev. 2002, 7 (4): 292-316.PubMed
78.
go back to reference James SJ, Melnyk S, Jernigan S: Low plasma methionine, cysteine, and glutathione levels are associated with increased frequency of common polymorphisms affecting methylation and glutathione pathways in children with autism. Experimental Biology Conference: 2 April 2005; San Diego. 2005 James SJ, Melnyk S, Jernigan S: Low plasma methionine, cysteine, and glutathione levels are associated with increased frequency of common polymorphisms affecting methylation and glutathione pathways in children with autism. Experimental Biology Conference: 2 April 2005; San Diego. 2005
79.
go back to reference Reed DJ, Orrenius S: The role of methionine in glutathione biosynthesis by isolated rat hepatocytes. Biochem Biophys Res Commun. 1997, 77: 1257-1264.CrossRef Reed DJ, Orrenius S: The role of methionine in glutathione biosynthesis by isolated rat hepatocytes. Biochem Biophys Res Commun. 1997, 77: 1257-1264.CrossRef
80.
go back to reference James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004, 80 (6): 1611-1617.PubMed James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004, 80 (6): 1611-1617.PubMed
81.
go back to reference Almaguer-Melian W, Cruz-Aguado R, Bergado JA: Synaptic plasticity is impaired in rats with a low glutathione content. Synapse. 2000, 38: 369-374.PubMedCrossRef Almaguer-Melian W, Cruz-Aguado R, Bergado JA: Synaptic plasticity is impaired in rats with a low glutathione content. Synapse. 2000, 38: 369-374.PubMedCrossRef
82.
go back to reference White AR, Cappai R: Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res. 2003, 71: 889-897.PubMedCrossRef White AR, Cappai R: Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res. 2003, 71: 889-897.PubMedCrossRef
83.
go back to reference Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973, 179: 588-590.PubMedCrossRef Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG: Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973, 179: 588-590.PubMedCrossRef
84.
go back to reference Sparaco M, Gaeta LM, Tozzi G, Bertini E, Pastore A, Simonati A, Santocelli FM, Piemonte F: Protein glutathionylation in human central nervous system: potential role in redox regulation of neuronal defense against free radicals. J Neurosci Res. 2006, 83 (2): 256-263.PubMedCrossRef Sparaco M, Gaeta LM, Tozzi G, Bertini E, Pastore A, Simonati A, Santocelli FM, Piemonte F: Protein glutathionylation in human central nervous system: potential role in redox regulation of neuronal defense against free radicals. J Neurosci Res. 2006, 83 (2): 256-263.PubMedCrossRef
85.
go back to reference Patrick L: Selenium biochemistry and cancer: a review of the literature. Altern Med Rev. 2004, 9 (3): 239-258.PubMed Patrick L: Selenium biochemistry and cancer: a review of the literature. Altern Med Rev. 2004, 9 (3): 239-258.PubMed
86.
go back to reference Shanker G, Aschner JL, Syversen T, Aschner M: Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res. 2004, 128 (1): 48-57.PubMedCrossRef Shanker G, Aschner JL, Syversen T, Aschner M: Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Brain Res Mol Brain Res. 2004, 128 (1): 48-57.PubMedCrossRef
87.
go back to reference Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S: Biochemical and molecular basis of thiomersal-induced apoptosis in t cells: a major role of mitochondrial pathway. Genes Immun. 2002, 3: 270-278.PubMedCrossRef Makani S, Gollapudi S, Yel L, Chiplunkar S, Gupta S: Biochemical and molecular basis of thiomersal-induced apoptosis in t cells: a major role of mitochondrial pathway. Genes Immun. 2002, 3: 270-278.PubMedCrossRef
88.
89.
go back to reference Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR, de Souza CF, Netto C, Wajner M, Vargas CR: Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci. 2009, 27 (3): 243-247.PubMedCrossRef Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR, de Souza CF, Netto C, Wajner M, Vargas CR: Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci. 2009, 27 (3): 243-247.PubMedCrossRef
90.
go back to reference Brkljacic J, Milutinovic DV, Dundjerski J, Matic G: Mercury stimulates rat liver glucocorticoid receptor association with Hsp90 and Hsp70. J Biochem Mol Toxicol. 2004, 18 (5): 257-260.PubMedCrossRef Brkljacic J, Milutinovic DV, Dundjerski J, Matic G: Mercury stimulates rat liver glucocorticoid receptor association with Hsp90 and Hsp70. J Biochem Mol Toxicol. 2004, 18 (5): 257-260.PubMedCrossRef
91.
go back to reference De Moor JM, Kennette WA, Collins OM, Koropatnick J: Zinc-metallothionein levels are correlated with enhanced glucocorticoid responsiveness in mouse cells exposed to ZnCl2, HgCl2, and heat shock. Toxicol Sci. 2001, 64: 67-76.CrossRef De Moor JM, Kennette WA, Collins OM, Koropatnick J: Zinc-metallothionein levels are correlated with enhanced glucocorticoid responsiveness in mouse cells exposed to ZnCl2, HgCl2, and heat shock. Toxicol Sci. 2001, 64: 67-76.CrossRef
92.
go back to reference Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, Kroemer G: Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol. 1997, 158 (10): 4612-4619.PubMed Macho A, Hirsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, Zamzami N, Kroemer G: Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol. 1997, 158 (10): 4612-4619.PubMed
93.
go back to reference Patel R, McIntosh L, McLaughlin J, Brooke S, Nimon V, Sapolsky R: Disruptive effects of glucocorticoids on glutathione peroxidase biochemistry in hippocampal cultures. J Neurochem. 2002, 82: 118-125.PubMedCrossRef Patel R, McIntosh L, McLaughlin J, Brooke S, Nimon V, Sapolsky R: Disruptive effects of glucocorticoids on glutathione peroxidase biochemistry in hippocampal cultures. J Neurochem. 2002, 82: 118-125.PubMedCrossRef
94.
go back to reference Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002, 59: 627-647.PubMedCrossRef Coyle P, Philcox JC, Carey LC, Rofe AM: Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002, 59: 627-647.PubMedCrossRef
95.
go back to reference Fraker PJ, King LE, Laakko T, Vollmer TL: The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000, 1399S-1406S. Suppl Fraker PJ, King LE, Laakko T, Vollmer TL: The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000, 1399S-1406S. Suppl
97.
go back to reference Simpkins CO: Metallothionein in human disease. Cell Mol Biol (Noisy-le-grand). 2000, 46 (2): 465-488. Simpkins CO: Metallothionein in human disease. Cell Mol Biol (Noisy-le-grand). 2000, 46 (2): 465-488.
98.
go back to reference Johnson S: The possible role of gradual accumulation of copper, cadmium, lead, and iron depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med Hypotheses. 2000, 55 (3): 239-241.PubMedCrossRef Johnson S: The possible role of gradual accumulation of copper, cadmium, lead, and iron depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med Hypotheses. 2000, 55 (3): 239-241.PubMedCrossRef
99.
go back to reference Klaassen CD, Liu J: Metallothionein transgenic and knock-out mouse models in the study of cadmium toxicity. J Toxicol Sci. 1998, 23: 97-102.PubMedCrossRef Klaassen CD, Liu J: Metallothionein transgenic and knock-out mouse models in the study of cadmium toxicity. J Toxicol Sci. 1998, 23: 97-102.PubMedCrossRef
100.
go back to reference Park JD, Liu Y, Klaassen CD: Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology. 2001, 163 (2-3): 93-100.PubMedCrossRef Park JD, Liu Y, Klaassen CD: Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology. 2001, 163 (2-3): 93-100.PubMedCrossRef
101.
go back to reference Shimada A, Nagayama Y, Morita T, Yoshida M, Suzuki JS, Satoh M, Tohyama C: Localization and role of metallothioneins in the olfactory pathway after exposure to mercury vapor. Exp Toxicol Pathol. 2005, 57 (2): 117-125.PubMedCrossRef Shimada A, Nagayama Y, Morita T, Yoshida M, Suzuki JS, Satoh M, Tohyama C: Localization and role of metallothioneins in the olfactory pathway after exposure to mercury vapor. Exp Toxicol Pathol. 2005, 57 (2): 117-125.PubMedCrossRef
102.
go back to reference Syring RA, Hoexum Brouwer T, Bouwer M: Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue-crab Callinectes sapidus. Comp Biochem Physiol C Toxicol Pharmacol. 2000, 125 (3): 325-332.PubMed Syring RA, Hoexum Brouwer T, Bouwer M: Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue-crab Callinectes sapidus. Comp Biochem Physiol C Toxicol Pharmacol. 2000, 125 (3): 325-332.PubMed
103.
go back to reference Choudhuri S, Kramer KK, Berman NE, Dalton TP, Andrews GK, Klaassen CD: Constitutive expression of metallothionein gene in mouse brain. Toxicol Appl Pharmacol. 1995, 131 (1): 144-154.PubMedCrossRef Choudhuri S, Kramer KK, Berman NE, Dalton TP, Andrews GK, Klaassen CD: Constitutive expression of metallothionein gene in mouse brain. Toxicol Appl Pharmacol. 1995, 131 (1): 144-154.PubMedCrossRef
104.
go back to reference Chuah MI, Getchell ML: Metallothionein in olfactory mucosa of Alzheimer's disease patients and apoE-deficient mice. Neuroreport. 1999, 10 (9): 1919-1924.PubMedCrossRef Chuah MI, Getchell ML: Metallothionein in olfactory mucosa of Alzheimer's disease patients and apoE-deficient mice. Neuroreport. 1999, 10 (9): 1919-1924.PubMedCrossRef
105.
go back to reference Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE: Metallothionein III is reduced in Alzheimer's disease. Brain Res. 2001, 894 (1): 37-45.PubMedCrossRef Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE: Metallothionein III is reduced in Alzheimer's disease. Brain Res. 2001, 894 (1): 37-45.PubMedCrossRef
106.
go back to reference Achner M: The functional significance of brain metallothioneins. FASEB J. 1996, 10: 1129-1136. Achner M: The functional significance of brain metallothioneins. FASEB J. 1996, 10: 1129-1136.
107.
go back to reference Miyazaki I, Asanuma M, Higashi Y, Sogawa CA, Tanaka K, Ogawa N: Age-related changes in expression of metallothionein-III in rat brain. Neurosci Res. 2002, 43: 323-333.PubMedCrossRef Miyazaki I, Asanuma M, Higashi Y, Sogawa CA, Tanaka K, Ogawa N: Age-related changes in expression of metallothionein-III in rat brain. Neurosci Res. 2002, 43: 323-333.PubMedCrossRef
108.
go back to reference Shankar AH, Prasad AS: Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998, 68 (suppl): 447S-463S.PubMed Shankar AH, Prasad AS: Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998, 68 (suppl): 447S-463S.PubMed
109.
go back to reference Sprietsma JE: Modern diets and diseases: NO-zinc balance, under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Med Hypotheses. 1999, 53 (1): 6-16.PubMedCrossRef Sprietsma JE: Modern diets and diseases: NO-zinc balance, under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Med Hypotheses. 1999, 53 (1): 6-16.PubMedCrossRef
110.
go back to reference Wainwright PE: Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002, 61 (1): 61-69.PubMedCrossRef Wainwright PE: Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc. 2002, 61 (1): 61-69.PubMedCrossRef
111.
go back to reference Hallahan B, Garland MR: Essential fatty acids and their role in the treatment of impulsivity disorders. Prostaglandins Leuko Essent Fatty Acids. 2004, 211-216. Hallahan B, Garland MR: Essential fatty acids and their role in the treatment of impulsivity disorders. Prostaglandins Leuko Essent Fatty Acids. 2004, 211-216.
112.
go back to reference Richardson A: The importance of omega 3 fatty acids for behaviour, cognition and mood. Scand J Food Nutri. 2003, 47 (2): 92-98.CrossRef Richardson A: The importance of omega 3 fatty acids for behaviour, cognition and mood. Scand J Food Nutri. 2003, 47 (2): 92-98.CrossRef
113.
go back to reference Ottoboni F, Ottoboni A: Can attention deficit-hyperactivity disorder result from nutritional deficiency?. J Am Physicians Surg. 2003, 8 (2): 58-60. Ottoboni F, Ottoboni A: Can attention deficit-hyperactivity disorder result from nutritional deficiency?. J Am Physicians Surg. 2003, 8 (2): 58-60.
116.
go back to reference Lukiw WJ: Docosahexaenoic acid and amyloid-beta peptide signaling in Alzheimer's disease. World Rev Nutr Diet. 2009, 99: 55-70.PubMedCrossRef Lukiw WJ: Docosahexaenoic acid and amyloid-beta peptide signaling in Alzheimer's disease. World Rev Nutr Diet. 2009, 99: 55-70.PubMedCrossRef
117.
go back to reference Wu A, Ying Z, Gomez-Pinilla F: Dietary omega-3 fatty acids normalize bdnf levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004, 21 (10): 1457-1467.PubMedCrossRef Wu A, Ying Z, Gomez-Pinilla F: Dietary omega-3 fatty acids normalize bdnf levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004, 21 (10): 1457-1467.PubMedCrossRef
118.
go back to reference Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG: A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005, 115 (10): 2774-2783.PubMedCentralPubMedCrossRef Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG: A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005, 115 (10): 2774-2783.PubMedCentralPubMedCrossRef
119.
go back to reference Stevens LJ, Zentall SS, Deck JL, Abate ML, Watkins BA, Lipp SR, Burgess JR: Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. J Clin Nutr. 1995, 62 (4): 761-768. Stevens LJ, Zentall SS, Deck JL, Abate ML, Watkins BA, Lipp SR, Burgess JR: Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. J Clin Nutr. 1995, 62 (4): 761-768.
120.
go back to reference Mitchell EA, Aman MG, Turbott SH, Manku M: Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila). 1987, 26 (8): 406-411.CrossRef Mitchell EA, Aman MG, Turbott SH, Manku M: Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila). 1987, 26 (8): 406-411.CrossRef
122.
go back to reference Voigt RG, Llorente AM, Jensen CL, Fraley JK, Berretta MC, Heird WC: A randomized double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J Pediatr. 2001, 139 (2): 189-196.PubMedCrossRef Voigt RG, Llorente AM, Jensen CL, Fraley JK, Berretta MC, Heird WC: A randomized double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J Pediatr. 2001, 139 (2): 189-196.PubMedCrossRef
123.
go back to reference Hirayama S, Hamazaki T, Terasawa K: Effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder-a placebo-controlled double blind study. Eur J Clin Nutr. 2003, 58: 467-473.CrossRef Hirayama S, Hamazaki T, Terasawa K: Effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder-a placebo-controlled double blind study. Eur J Clin Nutr. 2003, 58: 467-473.CrossRef
124.
go back to reference Richardson AJ, Montgomery P: The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005, 115 (5): 1360-1366.PubMedCrossRef Richardson AJ, Montgomery P: The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005, 115 (5): 1360-1366.PubMedCrossRef
126.
go back to reference Sinn N, Bryan J: Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. J Dev Behav Pediatr. 2007, 28 (2): 82-91.PubMedCrossRef Sinn N, Bryan J: Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. J Dev Behav Pediatr. 2007, 28 (2): 82-91.PubMedCrossRef
127.
go back to reference Johnson M, Ostlund S, Fransson G, Kadesjo B, Gillberg C: Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: a randomized placebo-controlled trial in children and adolescents. J Atten Disord. 2009, 12 (5): 394-401.PubMedCrossRef Johnson M, Ostlund S, Fransson G, Kadesjo B, Gillberg C: Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: a randomized placebo-controlled trial in children and adolescents. J Atten Disord. 2009, 12 (5): 394-401.PubMedCrossRef
128.
go back to reference Belanger SA, Vanasse M, Spahis S, Sylvestre MP, Lippe S, L'Heureux F, Ghadirian P, Vanasse CM, Levy E: Omega-3 fatty acid treatment of children with attention-deficit hyperactivity disorder: a randomized, double-blind, placebo-controlled study. Paediatr Child Health. 2009, 14 (2): 89-98.PubMedCentralPubMed Belanger SA, Vanasse M, Spahis S, Sylvestre MP, Lippe S, L'Heureux F, Ghadirian P, Vanasse CM, Levy E: Omega-3 fatty acid treatment of children with attention-deficit hyperactivity disorder: a randomized, double-blind, placebo-controlled study. Paediatr Child Health. 2009, 14 (2): 89-98.PubMedCentralPubMed
129.
go back to reference Peet M: Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot Essent Fatty Acids. 2003, 69: 477-485.PubMedCrossRef Peet M: Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot Essent Fatty Acids. 2003, 69: 477-485.PubMedCrossRef
130.
go back to reference Richardson AJ: Fatty acids in dyslexia, dyspraxia, ADHD and autistic spectrum. Nutri Prac. 2001, 3 (3): 18-24. Richardson AJ: Fatty acids in dyslexia, dyspraxia, ADHD and autistic spectrum. Nutri Prac. 2001, 3 (3): 18-24.
131.
go back to reference Arnold LE: Treatment alternatives for Attention-Deficit/Hyperactivity Disorder (ADHD). J Atten Disord. 1999, 3 (1): 30-48.CrossRef Arnold LE: Treatment alternatives for Attention-Deficit/Hyperactivity Disorder (ADHD). J Atten Disord. 1999, 3 (1): 30-48.CrossRef
132.
go back to reference Burgess JR, Stevens L, Zhang W, Peck L: Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr. 2000, 71: 327S-330S.PubMed Burgess JR, Stevens L, Zhang W, Peck L: Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr. 2000, 71: 327S-330S.PubMed
133.
go back to reference Kozielec T, Starobrat-Hermelin B: Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magnes Res. 1997, 10 (2): 143-148.PubMed Kozielec T, Starobrat-Hermelin B: Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magnes Res. 1997, 10 (2): 143-148.PubMed
134.
go back to reference Starobrat-Hermelin B, Kozielec T: The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactivity disorder (ADHD): postive response to magnesium oral loading test. Magnes Res. 1997, 10 (2): 149-156.PubMed Starobrat-Hermelin B, Kozielec T: The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactivity disorder (ADHD): postive response to magnesium oral loading test. Magnes Res. 1997, 10 (2): 149-156.PubMed
135.
go back to reference Galland L: Impaired essential fatty acid metabolism in latent tetany. Magnesium. 1985, 4: 333-338.PubMed Galland L: Impaired essential fatty acid metabolism in latent tetany. Magnesium. 1985, 4: 333-338.PubMed
136.
go back to reference Mahfouz MM, Smith TL, Kummerow FA: Changes in linoleic acid metabolism and cellular phospholipid fatty acid composition in LLC-PK cells cultured at low magnesium concentrations. Biochim Biophys Acta. 1989, 1006 (1): 70-74.PubMedCrossRef Mahfouz MM, Smith TL, Kummerow FA: Changes in linoleic acid metabolism and cellular phospholipid fatty acid composition in LLC-PK cells cultured at low magnesium concentrations. Biochim Biophys Acta. 1989, 1006 (1): 70-74.PubMedCrossRef
137.
go back to reference Arnold LE, DiSilvestro RA: Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2005, 15 (4): 619-627.PubMedCrossRef Arnold LE, DiSilvestro RA: Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2005, 15 (4): 619-627.PubMedCrossRef
138.
go back to reference Bilici M, Yildirim F, Kandil S, Bekaroglu M, Yildirmis S, Deger O, Ulgen M, Yildiran A, Aksu H: Double-blind placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2004, 28 (1): 181-190.PubMedCrossRef Bilici M, Yildirim F, Kandil S, Bekaroglu M, Yildirmis S, Deger O, Ulgen M, Yildiran A, Aksu H: Double-blind placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2004, 28 (1): 181-190.PubMedCrossRef
139.
go back to reference Guallar E, Sanz-Gallardo MI, Van't Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ, Heavy Metals and Myocardial Infarction Study Group: Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002, 347 (22): 1747-1754.PubMedCrossRef Guallar E, Sanz-Gallardo MI, Van't Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ, Heavy Metals and Myocardial Infarction Study Group: Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med. 2002, 347 (22): 1747-1754.PubMedCrossRef
140.
go back to reference Innis SM, Palaty J, Vaghri Z, Lockitch G: Increased levels of mercury associated with high fish intakes among children from Vancouver, Canada. J Pediatr. 2006, 148 (6): 759-63.PubMedCrossRef Innis SM, Palaty J, Vaghri Z, Lockitch G: Increased levels of mercury associated with high fish intakes among children from Vancouver, Canada. J Pediatr. 2006, 148 (6): 759-63.PubMedCrossRef
145.
go back to reference Hughes JR: A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav. 2008, 13 (3): 425-437.PubMedCrossRef Hughes JR: A review of recent reports on autism: 1000 studies published in 2007. Epilepsy Behav. 2008, 13 (3): 425-437.PubMedCrossRef
146.
go back to reference Shahar E: Causal diagrams for encoding and evaluation of information bias. J Eval Clin Prac. 2009, 15 (3): 436-440.CrossRef Shahar E: Causal diagrams for encoding and evaluation of information bias. J Eval Clin Prac. 2009, 15 (3): 436-440.CrossRef
147.
go back to reference Curtis LT, Patel K: Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): a review. J Altern Complement Med. 2008, 14 (1): 79-85.PubMedCrossRef Curtis LT, Patel K: Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): a review. J Altern Complement Med. 2008, 14 (1): 79-85.PubMedCrossRef
Metadata
Title
Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children
Authors
Renee Dufault
Roseanne Schnoll
Walter J Lukiw
Blaise LeBlanc
Charles Cornett
Lyn Patrick
David Wallinga
Steven G Gilbert
Raquel Crider
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2009
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-5-44

Other articles of this Issue 1/2009

Behavioral and Brain Functions 1/2009 Go to the issue