Skip to main content
Top
Published in: Sports Medicine - Open 1/2023

Open Access 01-12-2023 | Original Research Article

Menstrual Cycle Associated Alteration of Vastus Lateralis Motor Unit Function

Authors: Jessica Piasecki, Yuxiao Guo, Eleanor J. Jones, Bethan E. Phillips, Daniel W. Stashuk, Philip J. Atherton, Mathew Piasecki

Published in: Sports Medicine - Open | Issue 1/2023

Login to get access

Abstract

Background

Estrogen and progesterone are the primary female sex hormones and have net excitatory and inhibitory effects, respectively, on neuronal function. Fluctuating concentrations across the menstrual cycle has led to several lines of research in relation to neuromuscular function and performance; however evidence from animal and cell culture models has yet to be demonstrated in human motor units coupled with quantification of circulating hormones. Intramuscular electromyography was used to record motor unit potentials and corresponding motor unit potential trains from the vastus lateralis of nine eumenorrheic females during the early follicular, ovulation and mid luteal phases of the menstrual cycle, alongside assessments of neuromuscular performance. Multi-level regression models were applied to explore effects of time and of contraction level. Statistical significance was accepted as p < 0.05.

Results

Knee extensor maximum voluntary contraction, jump power, force steadiness, and balance did not differ across the menstrual phases (all p > 0.4). Firing rate of low threshold motor units (10% maximum voluntary contraction) was lower during the ovulation and mid luteal phases (β = − 0.82 Hz, p < 0.001), with no difference in motor unit potentials analysed from 25% maximum voluntary contraction contractions. Motor unit potentials were more complex during ovulation and mid luteal phase (p < 0.03), with no change in neuromuscular junction transmission instability (p > 0.3).

Conclusions

Assessments of neuromuscular performance did not differ across the menstrual cycle. The suppression of low threshold motor unit firing rate during periods of increased progesterone may suggest a potential inhibitory effect and an alteration of recruitment strategy; however this had no discernible effect on performance. These findings highlight contraction level-dependent modulation of vastus lateralis motor unit function over the eumenorrheic cycle, occurring independently of measures of performance.
Literature
1.
go back to reference Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol. 2001;145(6):669–79.PubMed Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur J Endocrinol. 2001;145(6):669–79.PubMed
2.
go back to reference Fehring RJ, Schneider M, Raviele K. Variability in the phases of the menstrual cycle. J Obstet Gynecol Neonatal Nurs. 2006;35(3):376–84.PubMed Fehring RJ, Schneider M, Raviele K. Variability in the phases of the menstrual cycle. J Obstet Gynecol Neonatal Nurs. 2006;35(3):376–84.PubMed
3.
go back to reference Bull JR, Rowland SP, Scherwitzl EB, Scherwitzl R, Danielsson KG, Harper J. Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. NPJ Digit Med. 2019;2:83.PubMedPubMedCentral Bull JR, Rowland SP, Scherwitzl EB, Scherwitzl R, Danielsson KG, Harper J. Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. NPJ Digit Med. 2019;2:83.PubMedPubMedCentral
4.
go back to reference Bruinvels G, Goldsmith E, Blagrove R, Simpkin A, Lewis N, Morton K, et al. Prevalence and frequency of menstrual cycle symptoms are associated with availability to train and compete: A study of 6812 exercising women recruited using the Strava exercise app. Br J Sports Med. 2021;55(8):438–43.PubMed Bruinvels G, Goldsmith E, Blagrove R, Simpkin A, Lewis N, Morton K, et al. Prevalence and frequency of menstrual cycle symptoms are associated with availability to train and compete: A study of 6812 exercising women recruited using the Strava exercise app. Br J Sports Med. 2021;55(8):438–43.PubMed
5.
go back to reference Messinis IE, Messini CI, Dafopoulos K. Novel aspects of the endocrinology of the menstrual cycle. Reprod BioMed Online. 2014;28(6):714–22.PubMed Messinis IE, Messini CI, Dafopoulos K. Novel aspects of the endocrinology of the menstrual cycle. Reprod BioMed Online. 2014;28(6):714–22.PubMed
6.
go back to reference Eshima J, Ong S, Davis TJ, Miranda C, Krishnamurthy D, Nachtsheim A, et al. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC × GC-TOFMS. J Chromatogr B. 2019;15(1121):48–57. Eshima J, Ong S, Davis TJ, Miranda C, Krishnamurthy D, Nachtsheim A, et al. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC × GC-TOFMS. J Chromatogr B. 2019;15(1121):48–57.
7.
go back to reference Schmalenberger KM, Eisenlohr-Moul TA, Würth L, Schneider E, Thayer JF, Ditzen B, et al. A systematic review and meta-analysis of within-person changes in cardiac vagal activity across the menstrual cycle: implications for female health and future studies. J Clin Med. 2019;8(11):1946.PubMedPubMedCentral Schmalenberger KM, Eisenlohr-Moul TA, Würth L, Schneider E, Thayer JF, Ditzen B, et al. A systematic review and meta-analysis of within-person changes in cardiac vagal activity across the menstrual cycle: implications for female health and future studies. J Clin Med. 2019;8(11):1946.PubMedPubMedCentral
8.
go back to reference Shayani DR, Arditte Hall KA, Isley BC, Rohan KJ, Zvolensky MJ, Nillni YI. The role of health anxiety in the experience of perceived stress across the menstrual cycle. Anxiety Stress Coping. 2020;33(6):706–15.PubMedPubMedCentral Shayani DR, Arditte Hall KA, Isley BC, Rohan KJ, Zvolensky MJ, Nillni YI. The role of health anxiety in the experience of perceived stress across the menstrual cycle. Anxiety Stress Coping. 2020;33(6):706–15.PubMedPubMedCentral
9.
go back to reference Bruinvels G, Blagrove RC, Goldsmith E, Shaw L, Martin D, Piasecki J. How lifestyle changes during the COVID-19 global pandemic affected the pattern and symptoms of the menstrual cycle. Int J Environ Res Public Health. 2022;19(20):13622.PubMedPubMedCentral Bruinvels G, Blagrove RC, Goldsmith E, Shaw L, Martin D, Piasecki J. How lifestyle changes during the COVID-19 global pandemic affected the pattern and symptoms of the menstrual cycle. Int J Environ Res Public Health. 2022;19(20):13622.PubMedPubMedCentral
10.
go back to reference Tenan MS, Peng YL, Hackney AC, Griffin L. Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Med Sci Sports Exerc. 2013;45(11):2151–7.PubMed Tenan MS, Peng YL, Hackney AC, Griffin L. Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity. Med Sci Sports Exerc. 2013;45(11):2151–7.PubMed
11.
go back to reference Tenan MS, Hackney AC, Griffin L. Maximal force and tremor changes across the menstrual cycle. Eur J Appl Physiol. 2016;116(1):153–60.PubMed Tenan MS, Hackney AC, Griffin L. Maximal force and tremor changes across the menstrual cycle. Eur J Appl Physiol. 2016;116(1):153–60.PubMed
12.
go back to reference Ansdell P, Brownstein CG, Skarabot J, Hicks KM, Simoes DCM, Thomas K, et al. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol. 2019;126(6):1701–12.PubMed Ansdell P, Brownstein CG, Skarabot J, Hicks KM, Simoes DCM, Thomas K, et al. Menstrual cycle-associated modulations in neuromuscular function and fatigability of the knee extensors in eumenorrheic women. J Appl Physiol. 2019;126(6):1701–12.PubMed
13.
go back to reference Weidauer L, Zwart MB, Clapper J, Albert J, Vukovich M, Specker B. Neuromuscular performance changes throughout the menstrual cycle in physically active females. J Musculoskelet Neuronal Interact. 2020;20(3):314–24.PubMedPubMedCentral Weidauer L, Zwart MB, Clapper J, Albert J, Vukovich M, Specker B. Neuromuscular performance changes throughout the menstrual cycle in physically active females. J Musculoskelet Neuronal Interact. 2020;20(3):314–24.PubMedPubMedCentral
14.
go back to reference Wojtys EM, Huston LJ, Lindenfeld TN, Hewett TE, Greenfield MLVH. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am J Sports Med. 1998;26(5):614–9.PubMed Wojtys EM, Huston LJ, Lindenfeld TN, Hewett TE, Greenfield MLVH. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am J Sports Med. 1998;26(5):614–9.PubMed
15.
go back to reference Shultz SJ, Kirk SE, Johnson ML, Sander TC, Perrin DH. Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc. 2004;36(7):1165–74.PubMed Shultz SJ, Kirk SE, Johnson ML, Sander TC, Perrin DH. Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc. 2004;36(7):1165–74.PubMed
16.
go back to reference Ekenros L, Papoutsi Z, Fridén C, Dahlman Wright K, Lindén HA. Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiol. 2017;219(2):486–93. Ekenros L, Papoutsi Z, Fridén C, Dahlman Wright K, Lindén HA. Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiol. 2017;219(2):486–93.
18.
go back to reference Mukherjee J, Cardarelli RA, Cantaut-Belarif Y, Deeb TZ, Srivastava DP, Tyagarajan SK, et al. Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABAA receptors at inhibitory synapses. Proc Natl Acad Sci. 2017;114(44):11763–8.PubMedPubMedCentral Mukherjee J, Cardarelli RA, Cantaut-Belarif Y, Deeb TZ, Srivastava DP, Tyagarajan SK, et al. Estradiol modulates the efficacy of synaptic inhibition by decreasing the dwell time of GABAA receptors at inhibitory synapses. Proc Natl Acad Sci. 2017;114(44):11763–8.PubMedPubMedCentral
19.
go back to reference Smith SS, Woolley CS. Cellular and molecular effects of steroid hormones on CNS excitability. Clevel Clin J Med. 2004;71(SUPPL. 2):S4. Smith SS, Woolley CS. Cellular and molecular effects of steroid hormones on CNS excitability. Clevel Clin J Med. 2004;71(SUPPL. 2):S4.
20.
go back to reference Potier M, Georges F, Brayda-Bruno L, Ladépêche L, Lamothe V, Al Abed AS, et al. Temporal memory and its enhancement by estradiol requires surface dynamics of hippocampal CA1 N-methyl-D-aspartate receptors. Biol Psychiatry. 2016;79(9):735–45.PubMed Potier M, Georges F, Brayda-Bruno L, Ladépêche L, Lamothe V, Al Abed AS, et al. Temporal memory and its enhancement by estradiol requires surface dynamics of hippocampal CA1 N-methyl-D-aspartate receptors. Biol Psychiatry. 2016;79(9):735–45.PubMed
21.
go back to reference Michopoulos V, Berga SL, Wilson ME. Estradiol and progesterone modify the effects of the serotonin reuptake transporter polymorphism on serotonergic responsivity to citalopram. Exp Clin Psychopharmacol. 2011;19(6):401–8.PubMedPubMedCentral Michopoulos V, Berga SL, Wilson ME. Estradiol and progesterone modify the effects of the serotonin reuptake transporter polymorphism on serotonergic responsivity to citalopram. Exp Clin Psychopharmacol. 2011;19(6):401–8.PubMedPubMedCentral
22.
go back to reference Bethea CL, Reddy AP. Ovarian steroids increase glutamatergic related gene expression in serotonin neurons of macaques. Mol Cell Neurosci. 2012;49(3):251–62.PubMed Bethea CL, Reddy AP. Ovarian steroids increase glutamatergic related gene expression in serotonin neurons of macaques. Mol Cell Neurosci. 2012;49(3):251–62.PubMed
23.
go back to reference Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9:37.PubMedPubMedCentral Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci. 2015;9:37.PubMedPubMedCentral
24.
go back to reference Smith SS, Woodward DJ, Chapin JK. Sex steroids modulate motor-correlated increases in cerebellar discharge. Brain Res. 1989;476(2):307–16.PubMed Smith SS, Woodward DJ, Chapin JK. Sex steroids modulate motor-correlated increases in cerebellar discharge. Brain Res. 1989;476(2):307–16.PubMed
25.
go back to reference Hsu FC, Smith SS. Progesterone withdrawal reduces paired-pulse inhibition in rat hippocampus: dependence on GABAA receptor α4 subunit upregulation. J Neurophysiol. 2003;89(1):186–98.PubMed Hsu FC, Smith SS. Progesterone withdrawal reduces paired-pulse inhibition in rat hippocampus: dependence on GABAA receptor α4 subunit upregulation. J Neurophysiol. 2003;89(1):186–98.PubMed
26.
go back to reference Smith SS, Waterhouse BD, Chapin JK, Woodward DJ. Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res. 1987;400(2):353–9.PubMed Smith SS, Waterhouse BD, Chapin JK, Woodward DJ. Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res. 1987;400(2):353–9.PubMed
27.
go back to reference Smith SS. Female sex steroid hormones: from receptors to networks to performance–actions on the sensorimotor system. Prog Neurobiol. 1994;44(1):55–86.PubMed Smith SS. Female sex steroid hormones: from receptors to networks to performance–actions on the sensorimotor system. Prog Neurobiol. 1994;44(1):55–86.PubMed
28.
go back to reference Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol. 1995;7(3):171–7.PubMed Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol. 1995;7(3):171–7.PubMed
29.
go back to reference Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, et al. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol. 2014;1(113):56–69. Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, et al. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol. 2014;1(113):56–69.
30.
go back to reference Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38(2):61–7.PubMedPubMedCentral Lowe DA, Baltgalvis KA, Greising SM. Mechanisms behind estrogen’s beneficial effect on muscle strength in females. Exerc Sport Sci Rev. 2010;38(2):61–7.PubMedPubMedCentral
31.
go back to reference Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol. 2008;20(4):451–61.PubMed Wray S, Noble K. Sex hormones and excitation-contraction coupling in the uterus: the effects of oestrous and hormones. J Neuroendocrinol. 2008;20(4):451–61.PubMed
32.
go back to reference Giovannini F, Sher E, Webster R, Boot J, Lang B. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions: calcium channels at the mouse neuromuscular junction. Br J Pharmacol. 2002;136(8):1135–45.PubMedPubMedCentral Giovannini F, Sher E, Webster R, Boot J, Lang B. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions: calcium channels at the mouse neuromuscular junction. Br J Pharmacol. 2002;136(8):1135–45.PubMedPubMedCentral
33.
go back to reference Lulic-Kuryllo T, Inglis JG. Sex differences in motor unit behaviour: a review. J Electromyogr Kinesiol. 2022;1(66): 102689. Lulic-Kuryllo T, Inglis JG. Sex differences in motor unit behaviour: a review. J Electromyogr Kinesiol. 2022;1(66): 102689.
34.
go back to reference Davies BN, Elford JC, Jamieson KF. Variations in performance in simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness. 1991;31(4):532–7.PubMed Davies BN, Elford JC, Jamieson KF. Variations in performance in simple muscle tests at different phases of the menstrual cycle. J Sports Med Phys Fitness. 1991;31(4):532–7.PubMed
35.
go back to reference Phillips SK, Sanderson AG, Birch K, Bruce SA, Woledge RC. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol. 1996;496(2):551–7.PubMedPubMedCentral Phillips SK, Sanderson AG, Birch K, Bruce SA, Woledge RC. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol. 1996;496(2):551–7.PubMedPubMedCentral
36.
go back to reference Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol. 1996;493(1):267–72.PubMedPubMedCentral Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol. 1996;493(1):267–72.PubMedPubMedCentral
37.
go back to reference Birch K, Reilly T. The diurnal rhythm in isometric muscular performance differs with eumenorrheic menstrual cycle phase. Chronobiol Int. 2002;19(4):731–42.PubMed Birch K, Reilly T. The diurnal rhythm in isometric muscular performance differs with eumenorrheic menstrual cycle phase. Chronobiol Int. 2002;19(4):731–42.PubMed
38.
go back to reference Dibrezzo R, Fort IL, Brown B. Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Therapy. 1988;10(4):113–6. Dibrezzo R, Fort IL, Brown B. Dynamic strength and work variations during three stages of the menstrual cycle. J Orthop Sports Phys Therapy. 1988;10(4):113–6.
39.
go back to reference Greeves JP, Cable NT, Luckas MJ, Reilly T, Biljan MM. Effects of acute changes in oestrogen on muscle function of the first dorsal interosseus muscle in humans. J Physiol. 1997;500(1):265–70.PubMedPubMedCentral Greeves JP, Cable NT, Luckas MJ, Reilly T, Biljan MM. Effects of acute changes in oestrogen on muscle function of the first dorsal interosseus muscle in humans. J Physiol. 1997;500(1):265–70.PubMedPubMedCentral
40.
go back to reference Janse De Jonge XAK, Boot CRL, Thom JM, Ruell PA, Thompson MW. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol. 2001;530(1):161.PubMed Janse De Jonge XAK, Boot CRL, Thom JM, Ruell PA, Thompson MW. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol. 2001;530(1):161.PubMed
41.
go back to reference Elliott KJ, Cable NT, Reilly T, Diver MJ. Effect of menstrual cycle phase on the concentration of bioavailable 17-β oestradiol and testosterone and muscle strength. Clin Sci. 2003;105(6):663–9. Elliott KJ, Cable NT, Reilly T, Diver MJ. Effect of menstrual cycle phase on the concentration of bioavailable 17-β oestradiol and testosterone and muscle strength. Clin Sci. 2003;105(6):663–9.
42.
go back to reference Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H. Muscle and tendon properties during menstrual cycle. Int J Sports Med. 2009;30(2):139–43.PubMed Kubo K, Miyamoto M, Tanaka S, Maki A, Tsunoda N, Kanehisa H. Muscle and tendon properties during menstrual cycle. Int J Sports Med. 2009;30(2):139–43.PubMed
43.
go back to reference Bruinvels G, Burden R, Brown N, Richards T, Pedlar C. The prevalence and impact of heavy menstrual bleeding (menorrhagia) in elite and non-elite athletes. PLoS ONE. 2016;11(2): e0149881.PubMedPubMedCentral Bruinvels G, Burden R, Brown N, Richards T, Pedlar C. The prevalence and impact of heavy menstrual bleeding (menorrhagia) in elite and non-elite athletes. PLoS ONE. 2016;11(2): e0149881.PubMedPubMedCentral
44.
go back to reference Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32.PubMed Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32.PubMed
45.
go back to reference Blagrove RC, Bruinvels G, Pedlar CR. Variations in strength-related measures during the menstrual cycle in eumenorrheic women: a systematic review and meta-analysis. J Sci Med Sport. 2020;23(12):1220–7.PubMed Blagrove RC, Bruinvels G, Pedlar CR. Variations in strength-related measures during the menstrual cycle in eumenorrheic women: a systematic review and meta-analysis. J Sci Med Sport. 2020;23(12):1220–7.PubMed
46.
go back to reference McNulty KL, Elliott-Sale KJ, Dolan E, Swinton PA, Ansdell P, Goodall S, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50(10):1813–27.PubMedPubMedCentral McNulty KL, Elliott-Sale KJ, Dolan E, Swinton PA, Ansdell P, Goodall S, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50(10):1813–27.PubMedPubMedCentral
47.
go back to reference McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–31.PubMed McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–31.PubMed
48.
go back to reference Janse DE, Jonge X, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610–7. Janse DE, Jonge X, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610–7.
49.
go back to reference de Jonge XJ, Thompson B, Ahreum HAN. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610–7. de Jonge XJ, Thompson B, Ahreum HAN. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610–7.
50.
go back to reference Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, et al. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol. 2020;599:193–205.PubMed Piasecki J, Inns TB, Bass JJ, Scott R, Stashuk DW, Phillips BE, et al. Influence of sex on the age-related adaptations of neuromuscular function and motor unit properties in elite masters athletes. J Physiol. 2020;599:193–205.PubMed
51.
go back to reference Guo Y, Jones EJ, Inns TB, Ely IA, Stashuk DW, Wilkinson DJ, et al. Neuromuscular recruitment strategies of the vastus lateralis according to sex. Acta Physiologica. 2022;235:e13803.PubMed Guo Y, Jones EJ, Inns TB, Ely IA, Stashuk DW, Wilkinson DJ, et al. Neuromuscular recruitment strategies of the vastus lateralis according to sex. Acta Physiologica. 2022;235:e13803.PubMed
52.
go back to reference Jones EJ, Piasecki J, Ireland A, Stashuk DW, Atherton PJ, Phillips BE, et al. Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. GeroScience. 2021;43(4):1–11. Jones EJ, Piasecki J, Ireland A, Stashuk DW, Atherton PJ, Phillips BE, et al. Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. GeroScience. 2021;43(4):1–11.
53.
go back to reference Stashuk DW. Decomposition and quantitative analysis of clinical electromyographic signals. Med Eng Phys. 1999;21(6–7):389–404.PubMed Stashuk DW. Decomposition and quantitative analysis of clinical electromyographic signals. Med Eng Phys. 1999;21(6–7):389–404.PubMed
54.
go back to reference Piasecki M, Garnés-Camarena O, Stashuk DW. Near-fiber electromyography. Clin Neurophysiol. 2021;132(5):1089–104.PubMed Piasecki M, Garnés-Camarena O, Stashuk DW. Near-fiber electromyography. Clin Neurophysiol. 2021;132(5):1089–104.PubMed
56.
go back to reference Chantler I, Mitchell D, Fuller A. Diclofenac potassium attenuates dysmenorrhea and restores exercise performance in women with primary dysmenorrhea. J Pain. 2009;10(2):191–200.PubMed Chantler I, Mitchell D, Fuller A. Diclofenac potassium attenuates dysmenorrhea and restores exercise performance in women with primary dysmenorrhea. J Pain. 2009;10(2):191–200.PubMed
57.
go back to reference Findlay RJ, Macrae EHR, Whyte IY, Easton C, Whyte LJF. How the menstrual cycle and menstruation affect sporting performance: experiences and perceptions of elite female rugby players. Br J Sports Med. 2020;54(18):1108–13.PubMed Findlay RJ, Macrae EHR, Whyte IY, Easton C, Whyte LJF. How the menstrual cycle and menstruation affect sporting performance: experiences and perceptions of elite female rugby players. Br J Sports Med. 2020;54(18):1108–13.PubMed
58.
go back to reference Bruinvels G, Goldsmith E, Blagrove R, Simpkin A, Lewis N, Morton K, et al. Prevalence and frequency of menstrual cycle symptoms are associated with availability to train and compete: a study of 6812 exercising women recruited using the Strava exercise app. Br J Sports Med. 2021;55(8):438–43.PubMed Bruinvels G, Goldsmith E, Blagrove R, Simpkin A, Lewis N, Morton K, et al. Prevalence and frequency of menstrual cycle symptoms are associated with availability to train and compete: a study of 6812 exercising women recruited using the Strava exercise app. Br J Sports Med. 2021;55(8):438–43.PubMed
59.
go back to reference Dam TV, Dalgaard LB, Sevdalis V, Bibby BM, Janse De Jonge X, Gravholt CH, et al. Muscle performance during the menstrual cycle correlates with psychological well-being, but not fluctuations in sex hormones. Med Sci Sports Exerc. 2022;54(10):1678–89.PubMedPubMedCentral Dam TV, Dalgaard LB, Sevdalis V, Bibby BM, Janse De Jonge X, Gravholt CH, et al. Muscle performance during the menstrual cycle correlates with psychological well-being, but not fluctuations in sex hormones. Med Sci Sports Exerc. 2022;54(10):1678–89.PubMedPubMedCentral
60.
go back to reference Inns TB, Bass JJ, Hardy EJO, Wilkinson DJ, Stashuk DW, Atherton PJ, et al. Motor unit dysregulation following 15 days of unilateral lower limb immobilisation. J Physiol. 2022;600(21):4753–69.PubMed Inns TB, Bass JJ, Hardy EJO, Wilkinson DJ, Stashuk DW, Atherton PJ, et al. Motor unit dysregulation following 15 days of unilateral lower limb immobilisation. J Physiol. 2022;600(21):4753–69.PubMed
61.
go back to reference Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, et al. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol. 2019;597(7):1873–87.PubMedPubMedCentral Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, et al. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol. 2019;597(7):1873–87.PubMedPubMedCentral
62.
go back to reference Avrillon S, Del Vecchio A, Farina D, Pons JL, Vogel C, Umehara J, et al. Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. J Appl Physiol. 2021;130(1):269–81.PubMed Avrillon S, Del Vecchio A, Farina D, Pons JL, Vogel C, Umehara J, et al. Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. J Appl Physiol. 2021;130(1):269–81.PubMed
63.
go back to reference Rossato J, Tucker K, Avrillon S, Lacourpaille L, Holobar A, Hug F. Less common synaptic input between muscles from the same group allows for more flexible coordination strategies during a fatiguing task. J Neurophysiol. 2022;127(2):421–33.PubMed Rossato J, Tucker K, Avrillon S, Lacourpaille L, Holobar A, Hug F. Less common synaptic input between muscles from the same group allows for more flexible coordination strategies during a fatiguing task. J Neurophysiol. 2022;127(2):421–33.PubMed
64.
go back to reference Orssatto LBR, Mackay K, Shield AJ, Sakugawa RL, Blazevich AJ, Trajano GS. Estimates of persistent inward currents increase with the level of voluntary drive in low-threshold motor units of plantar flexor muscles. J Neurophysiol. 2021;125(5):1746–54.PubMed Orssatto LBR, Mackay K, Shield AJ, Sakugawa RL, Blazevich AJ, Trajano GS. Estimates of persistent inward currents increase with the level of voluntary drive in low-threshold motor units of plantar flexor muscles. J Neurophysiol. 2021;125(5):1746–54.PubMed
65.
66.
go back to reference Heckman CJ, Gorassini MA, Bennett DJ. Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle Nerve. 2005;31(2):135–56. Heckman CJ, Gorassini MA, Bennett DJ. Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle Nerve. 2005;31(2):135–56.
67.
go back to reference Lee RH, Heckman CJ. Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol. 1998;80(2):583–93.PubMed Lee RH, Heckman CJ. Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol. 1998;80(2):583–93.PubMed
68.
go back to reference Valli G, Sarto F, Casolo A, Del Vecchio A, Franchi MV, Narici MV, et al. Lower limb suspension induces threshold-specific alterations of motor units properties that are reversed by active recovery. J Sport Health Sci. 2023;S2095254623000595. Valli G, Sarto F, Casolo A, Del Vecchio A, Franchi MV, Narici MV, et al. Lower limb suspension induces threshold-specific alterations of motor units properties that are reversed by active recovery. J Sport Health Sci. 2023;S2095254623000595.
69.
go back to reference Martinez-Valdes E, Negro F, Farina D, Falla D. Divergent response of low- versus high-threshold motor units to experimental muscle pain. J Physiol. 2020;598(11):2093–108.PubMed Martinez-Valdes E, Negro F, Farina D, Falla D. Divergent response of low- versus high-threshold motor units to experimental muscle pain. J Physiol. 2020;598(11):2093–108.PubMed
70.
go back to reference Mesquita RNO, Škarabot J, Pearcey GEP. Low-threshold motor units can be a pain during experimental muscle pain. J Physiol. 2020;598(13):2545–7.PubMed Mesquita RNO, Škarabot J, Pearcey GEP. Low-threshold motor units can be a pain during experimental muscle pain. J Physiol. 2020;598(13):2545–7.PubMed
71.
go back to reference Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol. 2005;93(5):2449–59.PubMed Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol. 2005;93(5):2449–59.PubMed
72.
go back to reference Ely IA, Jones EJ, Inns TB, Dooley S, Miller SBJ, Stashuk DW, et al. Training-induced improvements in knee extensor force accuracy are associated with reduced vastus lateralis motor unit firing variability. Exp Physiol. 2022;107(9):1061–70.PubMedPubMedCentral Ely IA, Jones EJ, Inns TB, Dooley S, Miller SBJ, Stashuk DW, et al. Training-induced improvements in knee extensor force accuracy are associated with reduced vastus lateralis motor unit firing variability. Exp Physiol. 2022;107(9):1061–70.PubMedPubMedCentral
73.
go back to reference Jenz ST, Beauchamp JA, Gomes MM, Negro F, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males. J Neurophysiol. 2023;129(6):1322–33.PubMed Jenz ST, Beauchamp JA, Gomes MM, Negro F, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males. J Neurophysiol. 2023;129(6):1322–33.PubMed
74.
go back to reference Sarto F, Stashuk DW, Franchi MV, Monti E, Zampieri S, Valli G, et al. Effects of short-term unloading and active recovery on human motor unit properties, neuromuscular junction transmission and transcriptomic profile. J Physiol. 2022;600(21):4731–51.PubMed Sarto F, Stashuk DW, Franchi MV, Monti E, Zampieri S, Valli G, et al. Effects of short-term unloading and active recovery on human motor unit properties, neuromuscular junction transmission and transcriptomic profile. J Physiol. 2022;600(21):4731–51.PubMed
75.
go back to reference Hourigan ML, McKinnon NB, Johnson M, Rice CL, Stashuk DW, Doherty TJ. Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol. 2015;126(12):2381–9.PubMed Hourigan ML, McKinnon NB, Johnson M, Rice CL, Stashuk DW, Doherty TJ. Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol. 2015;126(12):2381–9.PubMed
76.
go back to reference Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594(16):4525–36.PubMed Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594(16):4525–36.PubMed
Metadata
Title
Menstrual Cycle Associated Alteration of Vastus Lateralis Motor Unit Function
Authors
Jessica Piasecki
Yuxiao Guo
Eleanor J. Jones
Bethan E. Phillips
Daniel W. Stashuk
Philip J. Atherton
Mathew Piasecki
Publication date
01-12-2023
Publisher
Springer International Publishing
Published in
Sports Medicine - Open / Issue 1/2023
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-023-00639-8

Other articles of this Issue 1/2023

Sports Medicine - Open 1/2023 Go to the issue