Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2024

Open Access 01-12-2024 | Melanoma | Research

Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells

Authors: Angela Filograna, Stefano De Tito, Matteo Lo Monte, Rosario Oliva, Francesca Bruzzese, Maria Serena Roca, Antonella Zannetti, Adelaide Greco, Daniela Spano, Inmaculada Ayala, Assunta Liberti, Luigi Petraccone, Nina Dathan, Giuliana Catara, Laura Schembri, Antonino Colanzi, Alfredo Budillon, Andrea Rosario Beccari, Pompea Del Vecchio, Alberto Luini, Daniela Corda, Carmen Valente

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2024

Login to get access

Abstract

Background

The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with “cancer hallmarks” and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT).
Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions.
Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities.

Methods

Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model.

Results

We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models. 

Conclusions

This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jitian Mihulecea C-R, Rotaru M. Review: The Key Factors to Melanomagenesis. Life (Basel). 2023;13:181.PubMed Jitian Mihulecea C-R, Rotaru M. Review: The Key Factors to Melanomagenesis. Life (Basel). 2023;13:181.PubMed
2.
go back to reference Davey MG, Miller N, McInerney NM. A Review of Epidemiology and Cancer Biology of Malignant Melanoma. Cureus. 2021;13:e15087.PubMedPubMedCentral Davey MG, Miller N, McInerney NM. A Review of Epidemiology and Cancer Biology of Malignant Melanoma. Cureus. 2021;13:e15087.PubMedPubMedCentral
4.
go back to reference Rashid S, Shaughnessy M, Tsao H. Melanoma classification and management in the era of molecular medicine. Dermatol Clin. 2023;41:49–63.PubMedCrossRef Rashid S, Shaughnessy M, Tsao H. Melanoma classification and management in the era of molecular medicine. Dermatol Clin. 2023;41:49–63.PubMedCrossRef
5.
8.
go back to reference Weir HK, Marrett LD, Cokkinides V, Barnholtz-Sloan J, Patel P, Tai E, et al. Melanoma in adolescents and young adults (ages 15–39 years): United States, 1999–2006. J Am Acad Dermatol. 2011;65:S38–49.PubMedPubMedCentralCrossRef Weir HK, Marrett LD, Cokkinides V, Barnholtz-Sloan J, Patel P, Tai E, et al. Melanoma in adolescents and young adults (ages 15–39 years): United States, 1999–2006. J Am Acad Dermatol. 2011;65:S38–49.PubMedPubMedCentralCrossRef
9.
10.
go back to reference Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.PubMedCrossRef Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–7.PubMedCrossRef
11.
go back to reference Filippi AR, Fava P, Badellino S, Astrua C, Ricardi U, Quaglino P. Radiotherapy and immune checkpoints inhibitors for advanced melanoma. Radiother Oncol. 2016;120:1–12.PubMedCrossRef Filippi AR, Fava P, Badellino S, Astrua C, Ricardi U, Quaglino P. Radiotherapy and immune checkpoints inhibitors for advanced melanoma. Radiother Oncol. 2016;120:1–12.PubMedCrossRef
12.
go back to reference Goodson AG, Grossman D. Strategies for early melanoma detection: Approaches to the patient with nevi. J Am Acad Dermatol. 2009;60:719–35 quiz 736–8.PubMedPubMedCentralCrossRef Goodson AG, Grossman D. Strategies for early melanoma detection: Approaches to the patient with nevi. J Am Acad Dermatol. 2009;60:719–35 quiz 736–8.PubMedPubMedCentralCrossRef
13.
go back to reference Alexander W. The Checkpoint Immunotherapy Revolution: What Started as a Trickle Has Become a Flood, Despite Some Daunting Adverse Effects; New Drugs, Indications, and Combinations Continue to Emerge. P T. 2016;41:185–91.PubMedPubMedCentral Alexander W. The Checkpoint Immunotherapy Revolution: What Started as a Trickle Has Become a Flood, Despite Some Daunting Adverse Effects; New Drugs, Indications, and Combinations Continue to Emerge. P T. 2016;41:185–91.PubMedPubMedCentral
14.
go back to reference Schank TE, Hassel JC. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel). 2019;11:1048.PubMedCrossRef Schank TE, Hassel JC. Immunotherapies for the Treatment of Uveal Melanoma-History and Future. Cancers (Basel). 2019;11:1048.PubMedCrossRef
15.
go back to reference Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1480–92.PubMedCrossRef Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Cowey CL, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1480–92.PubMedCrossRef
16.
go back to reference Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS ONE. 2015;10:e0118564.PubMedPubMedCentralCrossRef Zimmer L, Vaubel J, Mohr P, Hauschild A, Utikal J, Simon J, et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naïve patients with metastatic uveal melanoma. PLoS ONE. 2015;10:e0118564.PubMedPubMedCentralCrossRef
17.
go back to reference Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, et al. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals. 2024;17:214.PubMedPubMedCentralCrossRef Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, et al. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals. 2024;17:214.PubMedPubMedCentralCrossRef
18.
go back to reference MacKie RM, Hauschild A, Eggermont AMM. Epidemiology of invasive cutaneous melanoma. Ann Oncol. 2009;20(Suppl 6):vil7. MacKie RM, Hauschild A, Eggermont AMM. Epidemiology of invasive cutaneous melanoma. Ann Oncol. 2009;20(Suppl 6):vil7.
19.
20.
go back to reference Aoude LG, Wadt KAW, Pritchard AL, Hayward NK. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015;28:148–60.PubMedCrossRef Aoude LG, Wadt KAW, Pritchard AL, Hayward NK. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res. 2015;28:148–60.PubMedCrossRef
21.
go back to reference Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–96.CrossRef Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161:1681–96.CrossRef
22.
go back to reference Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Timothy Bishop D, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2006;44:99–106.PubMedPubMedCentralCrossRef Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Timothy Bishop D, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2006;44:99–106.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature. 2001;413:83–6.PubMedCrossRef Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature. 2001;413:83–6.PubMedCrossRef
25.
go back to reference Kumar R, Smeds J, Lundh Rozell B, Hemminki K. Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas. Melanoma Res. 1999;9:138–47.PubMedCrossRef Kumar R, Smeds J, Lundh Rozell B, Hemminki K. Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas. Melanoma Res. 1999;9:138–47.PubMedCrossRef
26.
go back to reference Cannon-Albright LA, Meyer LJ, Goldgar DE, Lewis CM, McWhorter WP, Jost M, et al. Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus (MLM). Cancer Res. 1994;54:6041–4.PubMed Cannon-Albright LA, Meyer LJ, Goldgar DE, Lewis CM, McWhorter WP, Jost M, et al. Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus (MLM). Cancer Res. 1994;54:6041–4.PubMed
27.
go back to reference Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21.PubMedCrossRef Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21.PubMedCrossRef
28.
go back to reference Yang S, McNulty S, Meyskens FL. During human melanoma progression AP-1 binding pairs are altered with loss of c-Jun in vitro. Pigment Cell Res. 2004;17:74–83.PubMedCrossRef Yang S, McNulty S, Meyskens FL. During human melanoma progression AP-1 binding pairs are altered with loss of c-Jun in vitro. Pigment Cell Res. 2004;17:74–83.PubMedCrossRef
29.
go back to reference Deng H, Liu J, Deng Y, Han G, Shellman YG, Robinson SE, et al. CtBP1 is expressed in melanoma and represses the transcription of p16INK4a and Brca1. J Invest Dermatol. 2013;133:1294–301.PubMedPubMedCentralCrossRef Deng H, Liu J, Deng Y, Han G, Shellman YG, Robinson SE, et al. CtBP1 is expressed in melanoma and represses the transcription of p16INK4a and Brca1. J Invest Dermatol. 2013;133:1294–301.PubMedPubMedCentralCrossRef
30.
go back to reference Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts. 2014;5:489–511.PubMedCrossRef Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts. 2014;5:489–511.PubMedCrossRef
31.
32.
go back to reference Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther. 2017;18:379–91.PubMedPubMedCentralCrossRef Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther. 2017;18:379–91.PubMedPubMedCentralCrossRef
33.
go back to reference Verger A, Quinlan KGR, Crofts LA, Spanò S, Corda D, Kable EPW, et al. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol. 2006;26:4882–94.PubMedPubMedCentralCrossRef Verger A, Quinlan KGR, Crofts LA, Spanò S, Corda D, Kable EPW, et al. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol. 2006;26:4882–94.PubMedPubMedCentralCrossRef
34.
go back to reference Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol. 2007;39:1593–607.PubMedCrossRef Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol. 2007;39:1593–607.PubMedCrossRef
35.
go back to reference Valente C, Luini A, Corda D. Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol. 2013;140:407–21.PubMedCrossRef Valente C, Luini A, Corda D. Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol. 2013;140:407–21.PubMedCrossRef
36.
go back to reference Corda D, Colanzi A, Luini A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 2006;16:167–73.PubMedCrossRef Corda D, Colanzi A, Luini A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol. 2006;16:167–73.PubMedCrossRef
37.
go back to reference Deltour S, Pinte S, Guerardel C, Wasylyk B, Leprince D. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol. 2002;22:4890–901.PubMedPubMedCentralCrossRef Deltour S, Pinte S, Guerardel C, Wasylyk B, Leprince D. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol. 2002;22:4890–901.PubMedPubMedCentralCrossRef
38.
go back to reference Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell. 2002;10:857–69.PubMedCrossRef Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell. 2002;10:857–69.PubMedCrossRef
39.
go back to reference Nardini M, Spanò S, Cericola C, Pesce A, Massaro A, Millo E, et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 2003;22:3122–30.PubMedPubMedCentralCrossRef Nardini M, Spanò S, Cericola C, Pesce A, Massaro A, Millo E, et al. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 2003;22:3122–30.PubMedPubMedCentralCrossRef
40.
go back to reference Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PWM, Blaydes JP. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol. 2003;13:1234–9.PubMedCrossRef Mirnezami AH, Campbell SJ, Darley M, Primrose JN, Johnson PWM, Blaydes JP. Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription. Curr Biol. 2003;13:1234–9.PubMedCrossRef
41.
go back to reference Kuppuswamy M, Vijayalingam S, Zhao L-J, Zhou Y, Subramanian T, Ryerse J, et al. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol. 2008;28:269–81.PubMedCrossRef Kuppuswamy M, Vijayalingam S, Zhao L-J, Zhou Y, Subramanian T, Ryerse J, et al. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol. 2008;28:269–81.PubMedCrossRef
42.
go back to reference Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, et al. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO J. 2015;34:1056–77.PubMedPubMedCentralCrossRef Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, et al. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO J. 2015;34:1056–77.PubMedPubMedCentralCrossRef
43.
go back to reference Quinlan KGR, Nardini M, Verger A, Francescato P, Yaswen P, Corda D, et al. Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol. 2006;26:8159–72.PubMedPubMedCentralCrossRef Quinlan KGR, Nardini M, Verger A, Francescato P, Yaswen P, Corda D, et al. Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol. 2006;26:8159–72.PubMedPubMedCentralCrossRef
44.
go back to reference Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A. 2003;100:4568–73.PubMedPubMedCentralCrossRef Grooteclaes M, Deveraux Q, Hildebrand J, Zhang Q, Goodman RH, Frisch SM. C-terminal-binding protein corepresses epithelial and proapoptotic gene expression programs. Proc Natl Acad Sci U S A. 2003;100:4568–73.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang X-L, Huang C-X, Zhang J, Inoue A, Zeng S-E, Xiao S-J. CtBP1 is involved in epithelial-mesenchymal transition and is a potential therapeutic target for hepatocellular carcinoma. Oncol Rep. 2013;30:809–14.PubMedCrossRef Zhang X-L, Huang C-X, Zhang J, Inoue A, Zeng S-E, Xiao S-J. CtBP1 is involved in epithelial-mesenchymal transition and is a potential therapeutic target for hepatocellular carcinoma. Oncol Rep. 2013;30:809–14.PubMedCrossRef
47.
go back to reference Zhang Q, Wang S-Y, Nottke AC, Rocheleau JV, Piston DW, Goodman RH. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci U S A. 2006;103:9029–33.PubMedPubMedCentralCrossRef Zhang Q, Wang S-Y, Nottke AC, Rocheleau JV, Piston DW, Goodman RH. Redox sensor CtBP mediates hypoxia-induced tumor cell migration. Proc Natl Acad Sci U S A. 2006;103:9029–33.PubMedPubMedCentralCrossRef
48.
go back to reference Chen Y-W, Paliwal S, Draheim K, Grossman SR, Lewis BC. p19Arf inhibits the invasion of hepatocellular carcinoma cells by binding to C-terminal binding protein. Cancer Res. 2008;68:476–82.PubMedPubMedCentralCrossRef Chen Y-W, Paliwal S, Draheim K, Grossman SR, Lewis BC. p19Arf inhibits the invasion of hepatocellular carcinoma cells by binding to C-terminal binding protein. Cancer Res. 2008;68:476–82.PubMedPubMedCentralCrossRef
49.
go back to reference Paliwal S, Kovi RC, Nath B, Chen Y-W, Lewis BC, Grossman SR. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res. 2007;67:9322–9.PubMedCrossRef Paliwal S, Kovi RC, Nath B, Chen Y-W, Lewis BC, Grossman SR. The alternative reading frame tumor suppressor antagonizes hypoxia-induced cancer cell migration via interaction with the COOH-terminal binding protein corepressor. Cancer Res. 2007;67:9322–9.PubMedCrossRef
50.
go back to reference Mroz EA, Baird AH, Michaud WA, Rocco JW. COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. Cancer Res. 2008;68:6049–53.PubMedCrossRef Mroz EA, Baird AH, Michaud WA, Rocco JW. COOH-terminal binding protein regulates expression of the p16INK4A tumor suppressor and senescence in primary human cells. Cancer Res. 2008;68:6049–53.PubMedCrossRef
51.
go back to reference Straza MW, Paliwal S, Kovi RC, Rajeshkumar B, Trenh P, Parker D, et al. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle. 2010;9:3740–50.PubMedPubMedCentralCrossRef Straza MW, Paliwal S, Kovi RC, Rajeshkumar B, Trenh P, Parker D, et al. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle. 2010;9:3740–50.PubMedPubMedCentralCrossRef
52.
go back to reference De Luca P, Dalton GN, Scalise GD, Moiola CP, Porretti J, Massillo C, et al. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget. 2016;7:18798–811.PubMedPubMedCentralCrossRef De Luca P, Dalton GN, Scalise GD, Moiola CP, Porretti J, Massillo C, et al. CtBP1 associates metabolic syndrome and breast carcinogenesis targeting multiple miRNAs. Oncotarget. 2016;7:18798–811.PubMedPubMedCentralCrossRef
53.
go back to reference Moiola CP, De Luca P, Zalazar F, Cotignola J, Rodríguez-Seguí SA, Gardner K, et al. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin Cancer Res. 2014;20:4086–95.PubMedPubMedCentralCrossRef Moiola CP, De Luca P, Zalazar F, Cotignola J, Rodríguez-Seguí SA, Gardner K, et al. Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice. Clin Cancer Res. 2014;20:4086–95.PubMedPubMedCentralCrossRef
54.
go back to reference Di L-J, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, et al. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun. 2013;4:1449.PubMedCrossRef Di L-J, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, et al. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun. 2013;4:1449.PubMedCrossRef
55.
go back to reference Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle. 2014;13:3506–18.PubMedPubMedCentralCrossRef Patel J, Baranwal S, Love IM, Patel NJ, Grossman SR, Patel BB. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle. 2014;13:3506–18.PubMedPubMedCentralCrossRef
56.
go back to reference Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 1993;12:469–78.PubMedPubMedCentralCrossRef Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G. A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 1993;12:469–78.PubMedPubMedCentralCrossRef
57.
go back to reference Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A. 1995;92:10467–71.PubMedPubMedCentralCrossRef Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A. 1995;92:10467–71.PubMedPubMedCentralCrossRef
58.
go back to reference Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene. 2000;19:3823–8.PubMedCrossRef Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene. 2000;19:3823–8.PubMedCrossRef
59.
go back to reference Colanzi A, Hidalgo Carcedo C, Persico A, Cericola C, Turacchio G, Bonazzi M, et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 2007;26:2465–76.PubMedPubMedCentralCrossRef Colanzi A, Hidalgo Carcedo C, Persico A, Cericola C, Turacchio G, Bonazzi M, et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 2007;26:2465–76.PubMedPubMedCentralCrossRef
61.
go back to reference Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol. 2007;19:386–93.PubMedCrossRef Colanzi A, Corda D. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Opin Cell Biol. 2007;19:386–93.PubMedCrossRef
62.
go back to reference Hidalgo Carcedo C, Bonazzi M, Spanò S, Turacchio G, Colanzi A, Luini A, et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science. 2004;305:93–6.PubMedCrossRef Hidalgo Carcedo C, Bonazzi M, Spanò S, Turacchio G, Colanzi A, Luini A, et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science. 2004;305:93–6.PubMedCrossRef
63.
go back to reference Colanzi A, Grimaldi G, Catara G, Valente C, Cericola C, Liberali P, et al. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proc Natl Acad Sci U S A. 2013;110:9794–9.PubMedPubMedCentralCrossRef Colanzi A, Grimaldi G, Catara G, Valente C, Cericola C, Liberali P, et al. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proc Natl Acad Sci U S A. 2013;110:9794–9.PubMedPubMedCentralCrossRef
64.
go back to reference Valente C, Turacchio G, Mariggiò S, Pagliuso A, Gaibisso R, Di Tullio G, et al. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol. 2012;14:343–54.PubMedCrossRef Valente C, Turacchio G, Mariggiò S, Pagliuso A, Gaibisso R, Di Tullio G, et al. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol. 2012;14:343–54.PubMedCrossRef
65.
go back to reference Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 2008;27:970–81.PubMedPubMedCentralCrossRef Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 2008;27:970–81.PubMedPubMedCentralCrossRef
66.
go back to reference Yang J-S, Lee SY, Spanò S, Gad H, Zhang L, Nie Z, et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 2005;24:4133–43.PubMedPubMedCentralCrossRef Yang J-S, Lee SY, Spanò S, Gad H, Zhang L, Nie Z, et al. A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J. 2005;24:4133–43.PubMedPubMedCentralCrossRef
67.
go back to reference Nardini M, Valente C, Ricagno S, Luini A, Corda D, Bolognesi M. CtBP1/BARS Gly172–>Glu mutant structure: impairing NAD(H)-binding and dimerization. Biochem Biophys Res Commun. 2009;381:70–4.PubMedCrossRef Nardini M, Valente C, Ricagno S, Luini A, Corda D, Bolognesi M. CtBP1/BARS Gly172–>Glu mutant structure: impairing NAD(H)-binding and dimerization. Biochem Biophys Res Commun. 2009;381:70–4.PubMedCrossRef
68.
go back to reference Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun. 2016;7:12148.PubMedPubMedCentralCrossRef Pagliuso A, Valente C, Giordano LL, Filograna A, Li G, Circolo D, et al. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nat Commun. 2016;7:12148.PubMedPubMedCentralCrossRef
69.
go back to reference Nardini M, Svergun D, Konarev PV, Spanò S, Fasano M, Bracco C, et al. The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci. 2006;15:1042–50. Nardini M, Svergun D, Konarev PV, Spanò S, Fasano M, Bracco C, et al. The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci. 2006;15:1042–50. 
70.
go back to reference Yang J-S, Hsu J-W, Park S-Y, Lee SY, Li J, Bai M, et al. ALDH7A1 inhibits the intracellular transport pathways during hypoxia and starvation to promote cellular energy homeostasis. Nat Commun. 2019;10:4068.PubMedPubMedCentralCrossRef Yang J-S, Hsu J-W, Park S-Y, Lee SY, Li J, Bai M, et al. ALDH7A1 inhibits the intracellular transport pathways during hypoxia and starvation to promote cellular energy homeostasis. Nat Commun. 2019;10:4068.PubMedPubMedCentralCrossRef
72.
go back to reference Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM, et al. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg Med Chem. 2016;24:2707–15.PubMedPubMedCentralCrossRef Korwar S, Morris BL, Parikh HI, Coover RA, Doughty TW, Love IM, et al. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP). Bioorg Med Chem. 2016;24:2707–15.PubMedPubMedCentralCrossRef
73.
go back to reference Birts CN, Nijjar SK, Mardle CA, Hoakwie F, Duriez PJ, Blaydes JP, et al. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem Sci. 2013;4:3046–57.PubMedCrossRef Birts CN, Nijjar SK, Mardle CA, Hoakwie F, Duriez PJ, Blaydes JP, et al. A cyclic peptide inhibitor of C-terminal binding protein dimerization links metabolism with mitotic fidelity in breast cancer cells. Chem Sci. 2013;4:3046–57.PubMedCrossRef
74.
go back to reference Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X, et al. Small Molecule, NSC95397, Inhibits the CtBP1-Protein Partner Interaction and CtBP1-Mediated Transcriptional Repression. J Biomol Screen. 2015;20:663–72.PubMedCrossRef Blevins MA, Kouznetsova J, Krueger AB, King R, Griner LM, Hu X, et al. Small Molecule, NSC95397, Inhibits the CtBP1-Protein Partner Interaction and CtBP1-Mediated Transcriptional Repression. J Biomol Screen. 2015;20:663–72.PubMedCrossRef
75.
go back to reference Achouri Y, Noël G, Van Schaftingen E. 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem Biophys Res Commun. 2007;352:903–6.PubMedCrossRef Achouri Y, Noël G, Van Schaftingen E. 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem Biophys Res Commun. 2007;352:903–6.PubMedCrossRef
76.
go back to reference Yang Y, Yang WS, Yu T, Yi Y-S, Park JG, Jeong D, et al. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem Pharmacol. 2014;88:201–15.PubMedCrossRef Yang Y, Yang WS, Yu T, Yi Y-S, Park JG, Jeong D, et al. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem Pharmacol. 2014;88:201–15.PubMedCrossRef
77.
go back to reference Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, et al. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry. 2011;50:7218–27.PubMedCrossRef Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, et al. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry. 2011;50:7218–27.PubMedCrossRef
78.
go back to reference Larsson DE, Wickström M, Hassan S, Oberg K, Granberg D. The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res. 2010;30:149–56.PubMed Larsson DE, Wickström M, Hassan S, Oberg K, Granberg D. The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res. 2010;30:149–56.PubMed
79.
go back to reference Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ, et al. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther. 2008;7:330–40.PubMedCrossRef Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ, et al. A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther. 2008;7:330–40.PubMedCrossRef
80.
go back to reference Valente C, Spanò S, Luini A, Corda D. Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol. 2005;404:296–316.PubMedCrossRef Valente C, Spanò S, Luini A, Corda D. Purification and functional properties of the membrane fissioning protein CtBP3/BARS. Methods Enzymol. 2005;404:296–316.PubMedCrossRef
81.
82.
83.
go back to reference Cancino J, Capalbo A, Di Campli A, Giannotta M, Rizzo R, Jung JE, et al. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell. 2014;30:280–94.PubMedCrossRef Cancino J, Capalbo A, Di Campli A, Giannotta M, Rizzo R, Jung JE, et al. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell. 2014;30:280–94.PubMedCrossRef
85.
go back to reference Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR, et al. Structure-guided design of a high affinity inhibitor to human CtBP. ACS Chem Biol. 2015;10:1118–27.PubMedPubMedCentralCrossRef Hilbert BJ, Morris BL, Ellis KC, Paulsen JL, Schiffer CA, Grossman SR, et al. Structure-guided design of a high affinity inhibitor to human CtBP. ACS Chem Biol. 2015;10:1118–27.PubMedPubMedCentralCrossRef
86.
go back to reference Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462.PubMedCrossRef Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–462.PubMedCrossRef
87.
go back to reference Schrödinger Release 2020-4: LigPrep, Schrödinger, LLC, New York, NY. Schrödinger Release 2020-4: LigPrep, Schrödinger, LLC, New York, NY.
90.
go back to reference Ribeiro MMB, Franquelim HG, Castanho MARB, Veiga AS. Molecular interaction studies of peptides using steady-state fluorescence intensity Static (de)quenching revisited. J Pept Sci. 2008;14:401–6.PubMedCrossRef Ribeiro MMB, Franquelim HG, Castanho MARB, Veiga AS. Molecular interaction studies of peptides using steady-state fluorescence intensity Static (de)quenching revisited. J Pept Sci. 2008;14:401–6.PubMedCrossRef
91.
go back to reference Madison DL, Wirz JA, Siess D, Lundblad JR. Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem. 2013;288:27836–48.PubMedPubMedCentralCrossRef Madison DL, Wirz JA, Siess D, Lundblad JR. Nicotinamide adenine dinucleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J Biol Chem. 2013;288:27836–48.PubMedPubMedCentralCrossRef
94.
go back to reference Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 2019;593:2428–51.PubMedCrossRef Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 2019;593:2428–51.PubMedCrossRef
95.
go back to reference Balacescu O, Balacescu L, Tudoran O, Todor N, Rus M, Buiga R, et al. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer. 2014;14:246.PubMedPubMedCentralCrossRef Balacescu O, Balacescu L, Tudoran O, Todor N, Rus M, Buiga R, et al. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer. 2014;14:246.PubMedPubMedCentralCrossRef
96.
go back to reference Winklmeier A, Poser I, Hoek KS, Bosserhoff AK. Loss of full length CtBP1 expression enhances the invasive potential of human melanoma. BMC Cancer. 2009;9:52.PubMedPubMedCentralCrossRef Winklmeier A, Poser I, Hoek KS, Bosserhoff AK. Loss of full length CtBP1 expression enhances the invasive potential of human melanoma. BMC Cancer. 2009;9:52.PubMedPubMedCentralCrossRef
97.
go back to reference Wang R, Asangani IA, Chakravarthi BVSK, Ateeq B, Lonigro RJ, Cao Q, et al. Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia. 2012;14:905–14.PubMedPubMedCentralCrossRef Wang R, Asangani IA, Chakravarthi BVSK, Ateeq B, Lonigro RJ, Cao Q, et al. Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia. 2012;14:905–14.PubMedPubMedCentralCrossRef
98.
go back to reference Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 2004;7:677–85.PubMedCrossRef Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 2004;7:677–85.PubMedCrossRef
99.
go back to reference Zhao Z, Hao D, Wang L, Li J, Meng Y, Li P, et al. CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-β signaling. Oncogene. 2019;38:2076–91.PubMedCrossRef Zhao Z, Hao D, Wang L, Li J, Meng Y, Li P, et al. CtBP promotes metastasis of breast cancer through repressing cholesterol and activating TGF-β signaling. Oncogene. 2019;38:2076–91.PubMedCrossRef
100.
go back to reference Poser I, Bosserhoff A-K. Transcription factors involved in development and progression of malignant melanoma. Histol Histopathol. 2004;19:173–88.PubMed Poser I, Bosserhoff A-K. Transcription factors involved in development and progression of malignant melanoma. Histol Histopathol. 2004;19:173–88.PubMed
101.
go back to reference Liu X, Wang XS, Lee BJ, Wu-Baer FK, Lin X, Shao Z, et al. CtIP is essential for early B cell proliferation and development in mice. J Exp Med. 2019;216:1648–63.PubMedPubMedCentralCrossRef Liu X, Wang XS, Lee BJ, Wu-Baer FK, Lin X, Shao Z, et al. CtIP is essential for early B cell proliferation and development in mice. J Exp Med. 2019;216:1648–63.PubMedPubMedCentralCrossRef
102.
go back to reference Barroilhet L, Yang J, Hasselblatt K, Paranal RM, Ng S-K, Rauh-Hain JA, et al. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene. 2013;32:3896–903.PubMedCrossRef Barroilhet L, Yang J, Hasselblatt K, Paranal RM, Ng S-K, Rauh-Hain JA, et al. C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors. Oncogene. 2013;32:3896–903.PubMedCrossRef
103.
go back to reference Chawla AT, Chougoni KK, Joshi PJ, Cororaton AD, Memari P, Stansfield JC, et al. CtBP-a targetable dependency for tumor-initiating cell activity and metastasis in pancreatic adenocarcinoma. Oncogenesis. 2019;8:55.PubMedPubMedCentralCrossRef Chawla AT, Chougoni KK, Joshi PJ, Cororaton AD, Memari P, Stansfield JC, et al. CtBP-a targetable dependency for tumor-initiating cell activity and metastasis in pancreatic adenocarcinoma. Oncogenesis. 2019;8:55.PubMedPubMedCentralCrossRef
104.
go back to reference Wang L, Li J-J, Guo L-Y, Li P, Zhao Z, Zhou H, et al. Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis. 2018;7:26.PubMedPubMedCentralCrossRef Wang L, Li J-J, Guo L-Y, Li P, Zhao Z, Zhou H, et al. Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis. 2018;7:26.PubMedPubMedCentralCrossRef
105.
go back to reference Dcona MM, Damle PK, Zarate-Perez F, Morris BL, Nawaz Z, Dennis MJ, et al. Active-Site Tryptophan, the Target of Antineoplastic C-Terminal Binding Protein Inhibitors, Mediates Inhibitor Disruption of CtBP Oligomerization and Transcription Coregulatory Activities. Mol Pharmacol. 2019;96:99–108.PubMedPubMedCentralCrossRef Dcona MM, Damle PK, Zarate-Perez F, Morris BL, Nawaz Z, Dennis MJ, et al. Active-Site Tryptophan, the Target of Antineoplastic C-Terminal Binding Protein Inhibitors, Mediates Inhibitor Disruption of CtBP Oligomerization and Transcription Coregulatory Activities. Mol Pharmacol. 2019;96:99–108.PubMedPubMedCentralCrossRef
106.
go back to reference Chawla AT, Cororaton AD, Idowu MO, Damle PK, Szomju B, Ellis KC, et al. An intestinal stem cell niche in Apc mutated neoplasia targetable by CtBP inhibition. Oncotarget. 2018;9:32408–18.PubMedPubMedCentralCrossRef Chawla AT, Cororaton AD, Idowu MO, Damle PK, Szomju B, Ellis KC, et al. An intestinal stem cell niche in Apc mutated neoplasia targetable by CtBP inhibition. Oncotarget. 2018;9:32408–18.PubMedPubMedCentralCrossRef
107.
go back to reference Sumner ET, Chawla AT, Cororaton AD, Koblinski JE, Kovi RC, Love IM, et al. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia. Oncogene. 2017;36:4810–6.PubMedPubMedCentralCrossRef Sumner ET, Chawla AT, Cororaton AD, Koblinski JE, Kovi RC, Love IM, et al. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia. Oncogene. 2017;36:4810–6.PubMedPubMedCentralCrossRef
108.
go back to reference Nguyen PL, Elkamhawy A, Choi YH, Lee CH, Lee K, Cho J. Suppression of Tumor Growth and Cell Migration by Indole-Based Benzenesulfonamides and Their Synergistic Effects in Combination with Doxorubicin. Int J Mol Sci. 2022;23:9903.PubMedPubMedCentralCrossRef Nguyen PL, Elkamhawy A, Choi YH, Lee CH, Lee K, Cho J. Suppression of Tumor Growth and Cell Migration by Indole-Based Benzenesulfonamides and Their Synergistic Effects in Combination with Doxorubicin. Int J Mol Sci. 2022;23:9903.PubMedPubMedCentralCrossRef
111.
go back to reference Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, et al. Ureido-Substituted Benzenesulfonamides Potently Inhibit Carbonic Anhydrase IX and Show Antimetastatic Activity in a Model of Breast Cancer Metastasis. J Med Chem. 2011 54:1896–902. Available from: https://pubs.acs.org/doi/10.1021/jm101541x . Cited 2022 Dec 5 Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, et al. Ureido-Substituted Benzenesulfonamides Potently Inhibit Carbonic Anhydrase IX and Show Antimetastatic Activity in a Model of Breast Cancer Metastasis. J Med Chem. 2011 54:1896–902. Available from: https://​pubs.​acs.​org/​doi/​10.​1021/​jm101541x . Cited 2022 Dec 5
113.
go back to reference Sarnella A, Ferrara Y, Albanese S, Omodei D, Cerchia L, De Simone G, et al. Inhibition of Bone Marrow-Mesenchymal Stem Cell-Induced Carbonic Anhydrase IX Potentiates Chemotherapy Efficacy in Triple-Negative Breast Cancer Cells. Cells. 2023;12:298.PubMedPubMedCentralCrossRef Sarnella A, Ferrara Y, Albanese S, Omodei D, Cerchia L, De Simone G, et al. Inhibition of Bone Marrow-Mesenchymal Stem Cell-Induced Carbonic Anhydrase IX Potentiates Chemotherapy Efficacy in Triple-Negative Breast Cancer Cells. Cells. 2023;12:298.PubMedPubMedCentralCrossRef
114.
go back to reference Sarnella A, Ferrara Y, Auletta L, Albanese S, Cerchia L, Alterio V, et al. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J Exp Clin Cancer Res. 2022;41:122.PubMedPubMedCentralCrossRef Sarnella A, Ferrara Y, Auletta L, Albanese S, Cerchia L, Alterio V, et al. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J Exp Clin Cancer Res. 2022;41:122.PubMedPubMedCentralCrossRef
115.
go back to reference Sarnella A, D’Avino G, Hill BS, Alterio V, Winum J-Y, Supuran CT, et al. A Novel Inhibitor of Carbonic Anhydrases Prevents Hypoxia-Induced TNBC Cell Plasticity. Int J Mol Sci. 2020;21:8405.PubMedPubMedCentralCrossRef Sarnella A, D’Avino G, Hill BS, Alterio V, Winum J-Y, Supuran CT, et al. A Novel Inhibitor of Carbonic Anhydrases Prevents Hypoxia-Induced TNBC Cell Plasticity. Int J Mol Sci. 2020;21:8405.PubMedPubMedCentralCrossRef
Metadata
Title
Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells
Authors
Angela Filograna
Stefano De Tito
Matteo Lo Monte
Rosario Oliva
Francesca Bruzzese
Maria Serena Roca
Antonella Zannetti
Adelaide Greco
Daniela Spano
Inmaculada Ayala
Assunta Liberti
Luigi Petraccone
Nina Dathan
Giuliana Catara
Laura Schembri
Antonino Colanzi
Alfredo Budillon
Andrea Rosario Beccari
Pompea Del Vecchio
Alberto Luini
Daniela Corda
Carmen Valente
Publication date
01-12-2024
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2024
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-024-03044-5

Other articles of this Issue 1/2024

Journal of Experimental & Clinical Cancer Research 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine