Skip to main content
Top
Published in: Tumor Biology 4/2016

01-04-2016 | Original Article

Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction

Authors: Poliana Camila Marinello, Thamara Nishida Xavier da Silva, Carolina Panis, Amanda Fouto Neves, Kaliana Larissa Machado, Fernando Henrique Borges, Flávia Alessandra Guarnier, Sara Santos Bernardes, Júlio Cesar Madureira de-Freitas-Junior, José Andrés Morgado-Díaz, Rodrigo Cabral Luiz, Rubens Cecchini, Alessandra Lourenço Cecchini

Published in: Tumor Biology | Issue 4/2016

Login to get access

Abstract

The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aksoy S, Sendur MA, Altundag K. Demographic and clinico-pathological characteristics in patients with invasive breast cancer receiving metformin. Med Oncol. 2013;30(2):590–6.CrossRefPubMed Aksoy S, Sendur MA, Altundag K. Demographic and clinico-pathological characteristics in patients with invasive breast cancer receiving metformin. Med Oncol. 2013;30(2):590–6.CrossRefPubMed
2.
go back to reference Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):31–43.CrossRef Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):31–43.CrossRef
3.
go back to reference Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12.CrossRefPubMed Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12.CrossRefPubMed
4.
go back to reference Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko Y, Flomenberg N, Wang C, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011;12(10):924–38.CrossRefPubMedPubMedCentral Martinez-Outschoorn UE, Goldberg A, Lin Z, Ko Y, Flomenberg N, Wang C, et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther. 2011;12(10):924–38.CrossRefPubMedPubMedCentral
5.
go back to reference Campagnoli C, Berrino F, Venturelli E, Abbà C, Biglia N, Brucato T, et al. Metformin decreases circulating androgen and estrogen levels in nondiabetic women with breast cancer. Clin Breast Cancer. 2013;13(6):433–8.CrossRefPubMed Campagnoli C, Berrino F, Venturelli E, Abbà C, Biglia N, Brucato T, et al. Metformin decreases circulating androgen and estrogen levels in nondiabetic women with breast cancer. Clin Breast Cancer. 2013;13(6):433–8.CrossRefPubMed
6.
go back to reference Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16(8):746–52.CrossRefPubMed Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16(8):746–52.CrossRefPubMed
7.
go back to reference Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90.PubMed Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res. 2013;45(5):387–90.PubMed
8.
go back to reference Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2012;2:362.PubMedPubMedCentral Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2012;2:362.PubMedPubMedCentral
9.
go back to reference Malki A, Youssef A. Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol Res. 2011;19(6):275–85.CrossRefPubMed Malki A, Youssef A. Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol Res. 2011;19(6):275–85.CrossRefPubMed
10.
go back to reference Gago-Dominguez M, Jiang X, Castelao JE. Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis. Breast Cancer Res. 2007;9:201–12.CrossRefPubMedPubMedCentral Gago-Dominguez M, Jiang X, Castelao JE. Lipid peroxidation, oxidative stress genes and dietary factors in breast cancer protection: a hypothesis. Breast Cancer Res. 2007;9:201–12.CrossRefPubMedPubMedCentral
11.
go back to reference Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. 2012;133(1):89–97.CrossRefPubMed Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. 2012;133(1):89–97.CrossRefPubMed
12.
go back to reference Queiroz EAIF, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. Plos One. 2014;9(5):e98207.CrossRefPubMedPubMedCentral Queiroz EAIF, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. Plos One. 2014;9(5):e98207.CrossRefPubMedPubMedCentral
13.
go back to reference Ringnér M, Staaf J, Jonsson G. Nonfamilial breast cancer subtypes. Methods Mol Biol. 2013;973:279–95.CrossRefPubMed Ringnér M, Staaf J, Jonsson G. Nonfamilial breast cancer subtypes. Methods Mol Biol. 2013;973:279–95.CrossRefPubMed
14.
go back to reference Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, Mccue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–84.CrossRefPubMed Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, Mccue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–84.CrossRefPubMed
16.
go back to reference Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.CrossRefPubMed Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.CrossRefPubMed
17.
go back to reference Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A. 2005;102(38):13550–5.CrossRefPubMedPubMedCentral Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A. 2005;102(38):13550–5.CrossRefPubMedPubMedCentral
18.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation cytotoxic assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMed Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation cytotoxic assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMed
19.
go back to reference Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Methods. 1984;9(1):7–9.CrossRef Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Methods. 1984;9(1):7–9.CrossRef
20.
go back to reference Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 4th ed. New York: Oxford University Press; 2007. Halliwell B, Gutteridge JMC. Free radical in biology and medicine. 4th ed. New York: Oxford University Press; 2007.
21.
go back to reference Michaeli A, Feitelson J. Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol. 1994;59:284–98.CrossRefPubMed Michaeli A, Feitelson J. Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol. 1994;59:284–98.CrossRefPubMed
22.
go back to reference Simic MG. Peroxyl radical from oleic acid. In: Simic MG, editor. Autoxidation in food and biological systems. New York: Plenum; 1980. p. 17–26.CrossRef Simic MG. Peroxyl radical from oleic acid. In: Simic MG, editor. Autoxidation in food and biological systems. New York: Plenum; 1980. p. 17–26.CrossRef
23.
25.
go back to reference Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380–5.CrossRefPubMed Hu ML. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380–5.CrossRefPubMed
26.
go back to reference Gonzalez-Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10(2):93–100.CrossRefPubMed Gonzalez-Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10(2):93–100.CrossRefPubMed
27.
go back to reference Victorino VJ, Panis C, Campos FC, Cayres RC, Colado-Simão AN, Oliveira SR, et al. Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women. AGE. 2013;35:1411–21.CrossRefPubMed Victorino VJ, Panis C, Campos FC, Cayres RC, Colado-Simão AN, Oliveira SR, et al. Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women. AGE. 2013;35:1411–21.CrossRefPubMed
28.
go back to reference Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.CrossRefPubMed Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35:206–21.CrossRefPubMed
29.
go back to reference Hartmann A, Agurell E, Beevers S, Brendler-Schwaab S, Burlinson B, Clay P, et al. Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis. 2003;18(1):45–51.CrossRefPubMed Hartmann A, Agurell E, Beevers S, Brendler-Schwaab S, Burlinson B, Clay P, et al. Recommendations for conducting the in vivo alkaline comet assay. Mutagenesis. 2003;18(1):45–51.CrossRefPubMed
30.
go back to reference Wurth R, Barbieri F, Florio T. New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. Biomed Res Int. 2014;2014:126586.CrossRefPubMedPubMedCentral Wurth R, Barbieri F, Florio T. New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. Biomed Res Int. 2014;2014:126586.CrossRefPubMedPubMedCentral
31.
go back to reference Lee H, Park HJ, Park CS, Oh ET, Choi BH, Williams B, et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One. 2014;9(2):e87979.CrossRefPubMedPubMedCentral Lee H, Park HJ, Park CS, Oh ET, Choi BH, Williams B, et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One. 2014;9(2):e87979.CrossRefPubMedPubMedCentral
32.
go back to reference Lin YC, Wu MH, Wei TT, Lin YC, Huang WC, et al. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress. Oncotarget. 2013;5(1):298–308. Lin YC, Wu MH, Wei TT, Lin YC, Huang WC, et al. Metformin sensitizes anticancer effect of dasatinib in head and neck squamous cell carcinoma cells through AMPK-dependent ER stress. Oncotarget. 2013;5(1):298–308.
33.
go back to reference Gonzalez-Ângulo AM, Meric-Bernstam F. Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res. 2012;16(6):1695–700.CrossRef Gonzalez-Ângulo AM, Meric-Bernstam F. Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res. 2012;16(6):1695–700.CrossRef
34.
go back to reference Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res. 2011;9(5):603–15.CrossRefPubMedPubMedCentral Zhuang Y, Miskimins WK. Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res. 2011;9(5):603–15.CrossRefPubMedPubMedCentral
35.
go back to reference Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16:746–51.CrossRefPubMed Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16:746–51.CrossRefPubMed
36.
go back to reference Zordoky BNM, Bark D, Soltys CL, Sung MM, Dyck JRB. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta. 2014;1840(6):1943–57.CrossRefPubMed Zordoky BNM, Bark D, Soltys CL, Sung MM, Dyck JRB. The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta. 2014;1840(6):1943–57.CrossRefPubMed
37.
go back to reference Hasty P, Christy BA. p53 as an intervention target for cancer and aging. Pathobiol Aging Age Relat Dis. 2013;3:22702.CrossRef Hasty P, Christy BA. p53 as an intervention target for cancer and aging. Pathobiol Aging Age Relat Dis. 2013;3:22702.CrossRef
38.
go back to reference Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001;114:4139–40.PubMed Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001;114:4139–40.PubMed
39.
41.
go back to reference Krstic J, Trivanovic D, Mojsilovic S, Santibanez JF. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev. 2015;2015(654594):15. Krstic J, Trivanovic D, Mojsilovic S, Santibanez JF. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev. 2015;2015(654594):15.
42.
go back to reference Qi S, den Hartog GJ, Bast A. Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol. 2009;237(1):111–8.CrossRefPubMed Qi S, den Hartog GJ, Bast A. Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol. 2009;237(1):111–8.CrossRefPubMed
Metadata
Title
Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction
Authors
Poliana Camila Marinello
Thamara Nishida Xavier da Silva
Carolina Panis
Amanda Fouto Neves
Kaliana Larissa Machado
Fernando Henrique Borges
Flávia Alessandra Guarnier
Sara Santos Bernardes
Júlio Cesar Madureira de-Freitas-Junior
José Andrés Morgado-Díaz
Rodrigo Cabral Luiz
Rubens Cecchini
Alessandra Lourenço Cecchini
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4395-x

Other articles of this Issue 4/2016

Tumor Biology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine