Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2016

Open Access 01-12-2016 | Mini review

Mechanism of human rhinovirus infections

Authors: Dieter Blaas, Renate Fuchs

Published in: Molecular and Cellular Pediatrics | Issue 1/2016

Login to get access

Abstract

About 150 human rhinovirus serotypes are responsible for more than 50 % of recurrent upper respiratory infections. Despite having similar 3D structures, some bind members of the low-density lipoprotein receptor family, some ICAM-1, and some use CDHR3 for host cell infection. This is also reflected in the pathways exploited for cellular entry. We found that even rhinovirus serotypes binding the same receptor can travel along different endocytic pathways and release their RNA genome into the cytosol at different locations. How this may account for distinct immune responses elicited by various rhinoviruses and the observed symptoms of the common cold is briefly discussed.
Literature
2.
go back to reference Thibaut HJ, Lacroix C, De Palma AM, Franco D, Decramer M, Neyts J (2016) Toward antiviral therapy/prophylaxis for rhinovirus-induced exacerbations of chronic obstructive pulmonary disease: challenges, opportunities, and strategies. Rev Med Virol 26:21–33CrossRef Thibaut HJ, Lacroix C, De Palma AM, Franco D, Decramer M, Neyts J (2016) Toward antiviral therapy/prophylaxis for rhinovirus-induced exacerbations of chronic obstructive pulmonary disease: challenges, opportunities, and strategies. Rev Med Virol 26:21–33CrossRef
3.
go back to reference Turner RB (1997) Epidemiology, pathogenesis, and treatment of the common cold. Ann Allergy Asthma Immunol 78:531–539CrossRefPubMed Turner RB (1997) Epidemiology, pathogenesis, and treatment of the common cold. Ann Allergy Asthma Immunol 78:531–539CrossRefPubMed
4.
go back to reference Miller EK (2010) New human rhinovirus species and their significance in asthma exacerbation and airway remodeling. Immunol Allergy Clin North Am 30:541–552CrossRefPubMedPubMedCentral Miller EK (2010) New human rhinovirus species and their significance in asthma exacerbation and airway remodeling. Immunol Allergy Clin North Am 30:541–552CrossRefPubMedPubMedCentral
5.
go back to reference Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446CrossRefPubMed Knight DA, Holgate ST (2003) The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–446CrossRefPubMed
6.
go back to reference Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN, Claypool SM, Kaser A, Nagaishi T, Higgins DE, Mizoguchi E, Wakatsuki Y, Roopenian DC, Mizoguchi A, Lencer WI, Blumberg RS (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116:2142–2151CrossRefPubMedPubMedCentral Yoshida M, Kobayashi K, Kuo TT, Bry L, Glickman JN, Claypool SM, Kaser A, Nagaishi T, Higgins DE, Mizoguchi E, Wakatsuki Y, Roopenian DC, Mizoguchi A, Lencer WI, Blumberg RS (2006) Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J Clin Invest 116:2142–2151CrossRefPubMedPubMedCentral
7.
go back to reference Song Y, Salinas D, Nielson DW, Verkman AS (2006) Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 290:C741–C749CrossRefPubMed Song Y, Salinas D, Nielson DW, Verkman AS (2006) Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 290:C741–C749CrossRefPubMed
8.
go back to reference Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59CrossRefPubMedPubMedCentral Palmenberg AC, Spiro D, Kuzmickas R, Wang S, Djikeng A, Rathe JA, Fraser-Liggett CM, Liggett SB (2009) Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 324:55–59CrossRefPubMedPubMedCentral
9.
go back to reference Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853CrossRefPubMed Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853CrossRefPubMed
10.
go back to reference Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low densitylipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Nat Acad Sci USA 91:1839–1842CrossRefPubMedPubMedCentral Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low densitylipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Nat Acad Sci USA 91:1839–1842CrossRefPubMedPubMedCentral
11.
go back to reference Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, Palmenberg AC, Gern JE (2015) Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 112:5485–5490CrossRefPubMedPubMedCentral Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, Palmenberg AC, Gern JE (2015) Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 112:5485–5490CrossRefPubMedPubMedCentral
12.
go back to reference Winther B, Arruda E, Witek TJ, Marlin SD, Tsianco MM, Innes DJ, Hayden FG (2002) Expression of ICAM-1 in nasal epithelium and levels of soluble ICAM-1 in nasal lavage fluid during human experimental rhinovirus infection. Arch Otolaryngol Head Neck Surg 128:131–136CrossRefPubMed Winther B, Arruda E, Witek TJ, Marlin SD, Tsianco MM, Innes DJ, Hayden FG (2002) Expression of ICAM-1 in nasal epithelium and levels of soluble ICAM-1 in nasal lavage fluid during human experimental rhinovirus infection. Arch Otolaryngol Head Neck Surg 128:131–136CrossRefPubMed
13.
go back to reference Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Rev Med Virol 210:281–297CrossRef Fuchs R, Blaas D (2010) Uncoating of human rhinoviruses. Rev Med Virol 210:281–297CrossRef
14.
go back to reference Jurgeit A, Moese S, Roulin P, Dorsch A, Lotzerich M, Lee WM, Greber UF (2010) An RNA replication-center assay for high content image-based quantifications of human rhinovirus and coxsackievirus infections. Virol J 7:264CrossRefPubMedPubMedCentral Jurgeit A, Moese S, Roulin P, Dorsch A, Lotzerich M, Lee WM, Greber UF (2010) An RNA replication-center assay for high content image-based quantifications of human rhinovirus and coxsackievirus infections. Virol J 7:264CrossRefPubMedPubMedCentral
15.
go back to reference Casasnovas JM, Springer TA (1994) Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 68:5882–5889PubMedPubMedCentral Casasnovas JM, Springer TA (1994) Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J Virol 68:5882–5889PubMedPubMedCentral
16.
go back to reference Nurani G, Lindqvist B, Casasnovas JM (2003) Receptor priming of major group human rhinoviruses for uncoating and entry at mild low-pH environments. J Virol 77:11985–11991CrossRefPubMedPubMedCentral Nurani G, Lindqvist B, Casasnovas JM (2003) Receptor priming of major group human rhinoviruses for uncoating and entry at mild low-pH environments. J Virol 77:11985–11991CrossRefPubMedPubMedCentral
17.
go back to reference Inal JM, Jorfi S (2013) Coxsackievirus B transmission and possible new roles for extracellular vesicles. Biochem Soc Trans 41:299–302CrossRefPubMed Inal JM, Jorfi S (2013) Coxsackievirus B transmission and possible new roles for extracellular vesicles. Biochem Soc Trans 41:299–302CrossRefPubMed
18.
go back to reference Mosser AG, Brockman-Schneider R, Amineva S, Burchell L, Sedgwick JB, Busse WW, Gern JE (2002) Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium. J Infect Dis 185:734–743CrossRefPubMed Mosser AG, Brockman-Schneider R, Amineva S, Burchell L, Sedgwick JB, Busse WW, Gern JE (2002) Similar frequency of rhinovirus-infectible cells in upper and lower airway epithelium. J Infect Dis 185:734–743CrossRefPubMed
19.
go back to reference Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr, Hayden FG (1995) Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 171:1329–1333CrossRefPubMed Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr, Hayden FG (1995) Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 171:1329–1333CrossRefPubMed
20.
go back to reference Jakiela B, Brockman-Schneider R, Amineva S, Lee WM, Gern JE (2008) Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol 38:517–523CrossRefPubMedPubMedCentral Jakiela B, Brockman-Schneider R, Amineva S, Lee WM, Gern JE (2008) Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol 38:517–523CrossRefPubMedPubMedCentral
23.
go back to reference Rath T, Baker K, Pyzik M, Blumberg RS (2014) Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Front Immunol 5:664CrossRefPubMedPubMedCentral Rath T, Baker K, Pyzik M, Blumberg RS (2014) Regulation of immune responses by the neonatal fc receptor and its therapeutic implications. Front Immunol 5:664CrossRefPubMedPubMedCentral
24.
go back to reference Wark PA, Grissell T, Davies B, See H, Gibson PG (2009) Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains. Respirology 14:180–186CrossRefPubMed Wark PA, Grissell T, Davies B, See H, Gibson PG (2009) Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains. Respirology 14:180–186CrossRefPubMed
25.
go back to reference Schuler BA, Schreiber MT, Li L, Mokry M, Kingdon ML, Raugi DN, Smith C, Hameister C, Racaniello VR, Hall DJ (2014) Major and minor group rhinoviruses elicit differential signaling and cytokine responses as a function of receptor-mediated signal transduction. PLoS One 9:e93897CrossRefPubMedPubMedCentral Schuler BA, Schreiber MT, Li L, Mokry M, Kingdon ML, Raugi DN, Smith C, Hameister C, Racaniello VR, Hall DJ (2014) Major and minor group rhinoviruses elicit differential signaling and cytokine responses as a function of receptor-mediated signal transduction. PLoS One 9:e93897CrossRefPubMedPubMedCentral
Metadata
Title
Mechanism of human rhinovirus infections
Authors
Dieter Blaas
Renate Fuchs
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2016
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-016-0049-3

Other articles of this Issue 1/2016

Molecular and Cellular Pediatrics 1/2016 Go to the issue