Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2010

Open Access 01-12-2010 | Review

Mechanics rules cell biology

Authors: James HC Wang, Bin Li

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2010

Login to get access

Abstract

Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fredberg U, Stengaard-Pedersen K: Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports. 2008, 18 (1): 3-15.CrossRefPubMed Fredberg U, Stengaard-Pedersen K: Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports. 2008, 18 (1): 3-15.CrossRefPubMed
2.
go back to reference Wang JH, Iosifidis MI, Fu FH: Biomechanical basis for tendinopathy. Clin Orthop Relat Res. 2006, 443: 320-332. 10.1097/01.blo.0000195927.81845.46.CrossRefPubMed Wang JH, Iosifidis MI, Fu FH: Biomechanical basis for tendinopathy. Clin Orthop Relat Res. 2006, 443: 320-332. 10.1097/01.blo.0000195927.81845.46.CrossRefPubMed
3.
go back to reference Wang JH, Thampatty BP: Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol. 2008, 271: 301-346. full_text.CrossRefPubMed Wang JH, Thampatty BP: Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol. 2008, 271: 301-346. full_text.CrossRefPubMed
4.
go back to reference Archambault J, Tsuzaki M, Herzog W, Banes AJ: Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research. 2002, 20 (1): 36-39. 10.1016/S0736-0266(01)00075-4.CrossRefPubMed Archambault J, Tsuzaki M, Herzog W, Banes AJ: Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research. 2002, 20 (1): 36-39. 10.1016/S0736-0266(01)00075-4.CrossRefPubMed
5.
go back to reference Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H: Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Structure & Function. 2002, 27 (3): 139-144.CrossRef Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H: Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Structure & Function. 2002, 27 (3): 139-144.CrossRef
6.
go back to reference Li Z, Yang G, Khan M, Stone D, Woo SL, Wang JH: Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. American Journal of Sports Medicine. 2004, 32 (2): 435-440. 10.1177/0095399703258680.CrossRefPubMed Li Z, Yang G, Khan M, Stone D, Woo SL, Wang JH: Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. American Journal of Sports Medicine. 2004, 32 (2): 435-440. 10.1177/0095399703258680.CrossRefPubMed
7.
go back to reference Hung CT, Williams JL: A Method for Inducing Equi-Biaxial and Uniform Strains in Elastomeric Membranes Used as Cell Substrates. Journal of Biomechanics. 1994, 27 (2): 227-232. 10.1016/0021-9290(94)90212-7.CrossRefPubMed Hung CT, Williams JL: A Method for Inducing Equi-Biaxial and Uniform Strains in Elastomeric Membranes Used as Cell Substrates. Journal of Biomechanics. 1994, 27 (2): 227-232. 10.1016/0021-9290(94)90212-7.CrossRefPubMed
8.
go back to reference Lee AA, Delhaas T, Waldman LK, MacKenna DA, Villarreal FJ, McCulloch AD: An equibiaxial strain system for cultured cells. Am J Physiol. 1996, 271 (4 Pt 1): C1400-1408.PubMed Lee AA, Delhaas T, Waldman LK, MacKenna DA, Villarreal FJ, McCulloch AD: An equibiaxial strain system for cultured cells. Am J Physiol. 1996, 271 (4 Pt 1): C1400-1408.PubMed
9.
go back to reference Schaffer JL, Rizen M, Litalien GJ, Benbrahim A, Megerman J, Gerstenfeld LC, Gray ML: Device for the Application of a Dynamic Biaxially Uniform and Isotropic Strain to a Flexible Cell-Culture Membrane. Journal of Orthopaedic Research. 1994, 12 (5): 709-719. 10.1002/jor.1100120514.CrossRefPubMed Schaffer JL, Rizen M, Litalien GJ, Benbrahim A, Megerman J, Gerstenfeld LC, Gray ML: Device for the Application of a Dynamic Biaxially Uniform and Isotropic Strain to a Flexible Cell-Culture Membrane. Journal of Orthopaedic Research. 1994, 12 (5): 709-719. 10.1002/jor.1100120514.CrossRefPubMed
10.
go back to reference Sotoudeh M, Jalali S, Usami S, Shyy JY, Chien S: A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann Biomed Eng. 1998, 26 (2): 181-189. 10.1114/1.88.CrossRefPubMed Sotoudeh M, Jalali S, Usami S, Shyy JY, Chien S: A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells. Ann Biomed Eng. 1998, 26 (2): 181-189. 10.1114/1.88.CrossRefPubMed
11.
go back to reference Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B: Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003, 21 (3): 451-457. 10.1016/S0736-0266(02)00230-9.CrossRefPubMed Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B: Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res. 2003, 21 (3): 451-457. 10.1016/S0736-0266(02)00230-9.CrossRefPubMed
12.
go back to reference Toyoda T, Seedhom BB, Yao JQ, Kirkham J, Brookes S, Bonass WA: Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis & Rheumatism. 2003, 48 (10): 2865-2872.CrossRef Toyoda T, Seedhom BB, Yao JQ, Kirkham J, Brookes S, Bonass WA: Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis & Rheumatism. 2003, 48 (10): 2865-2872.CrossRef
13.
go back to reference Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G: Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. Journal of Orthopaedic Research. 1993, 11 (5): 717-729. 10.1002/jor.1100110514.CrossRefPubMed Burton-Wurster N, Vernier-Singer M, Farquhar T, Lust G: Effect of compressive loading and unloading on the synthesis of total protein, proteoglycan, and fibronectin by canine cartilage explants. Journal of Orthopaedic Research. 1993, 11 (5): 717-729. 10.1002/jor.1100110514.CrossRefPubMed
14.
go back to reference Steinmeyer J, Torzilli PA, Burton-Wurster N, Lust G: A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading. Res Exp Med (Berl). 1993, 193 (3): 137-142. 10.1007/BF02576220.CrossRef Steinmeyer J, Torzilli PA, Burton-Wurster N, Lust G: A new pressure chamber to study the biosynthetic response of articular cartilage to mechanical loading. Res Exp Med (Berl). 1993, 193 (3): 137-142. 10.1007/BF02576220.CrossRef
15.
go back to reference Chen AC, Sah RL: Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro. J Orthop Res. 1998, 16 (5): 542-550. 10.1002/jor.1100160504.CrossRefPubMed Chen AC, Sah RL: Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro. J Orthop Res. 1998, 16 (5): 542-550. 10.1002/jor.1100160504.CrossRefPubMed
16.
go back to reference Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A: Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. Journal of Orthopaedic Research. 2002, 20 (4): 842-848. 10.1016/S0736-0266(01)00160-7.CrossRefPubMed Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A: Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. Journal of Orthopaedic Research. 2002, 20 (4): 842-848. 10.1016/S0736-0266(01)00160-7.CrossRefPubMed
17.
go back to reference Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP: Chondrocyte cells respond mechanically to compressive loads. Journal of Orthopaedic Research. 1994, 12 (3): 311-320. 10.1002/jor.1100120303.CrossRefPubMed Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP: Chondrocyte cells respond mechanically to compressive loads. Journal of Orthopaedic Research. 1994, 12 (3): 311-320. 10.1002/jor.1100120303.CrossRefPubMed
18.
go back to reference Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T: Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981, 211 (4486): 1052-1054. 10.1126/science.7008197.CrossRefPubMed Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T: Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981, 211 (4486): 1052-1054. 10.1126/science.7008197.CrossRefPubMed
19.
go back to reference Bell E, Ivarsson B, Merrill C: Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA. 1979, 76 (3): 1274-1278. 10.1073/pnas.76.3.1274.CrossRefPubMedPubMedCentral Bell E, Ivarsson B, Merrill C: Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA. 1979, 76 (3): 1274-1278. 10.1073/pnas.76.3.1274.CrossRefPubMedPubMedCentral
20.
go back to reference Grinnell F: Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in Cell Biology. 2000, 10 (9): 362-365. 10.1016/S0962-8924(00)01802-X.CrossRefPubMed Grinnell F: Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in Cell Biology. 2000, 10 (9): 362-365. 10.1016/S0962-8924(00)01802-X.CrossRefPubMed
21.
go back to reference Fernandez P, Bausch AR: The compaction of gels by cells: a case of collective mechanical activity. Integr Biol (Camb). 2009, 1 (3): 252-259. 10.1039/b822897c.CrossRef Fernandez P, Bausch AR: The compaction of gels by cells: a case of collective mechanical activity. Integr Biol (Camb). 2009, 1 (3): 252-259. 10.1039/b822897c.CrossRef
22.
go back to reference Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L: Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem. 1999, 76 (2): 217-230. 10.1002/(SICI)1097-4644(20000201)76:2<217::AID-JCB6>3.0.CO;2-K.CrossRefPubMed Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L: Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem. 1999, 76 (2): 217-230. 10.1002/(SICI)1097-4644(20000201)76:2<217::AID-JCB6>3.0.CO;2-K.CrossRefPubMed
23.
go back to reference Peperzak KA, Gilbert TW, Wang JH: A multi-station dynamic-culture force monitor system to study cell mechanobiology. Med Eng Phys. 2004, 26 (4): 355-358. 10.1016/j.medengphy.2003.10.004.CrossRefPubMed Peperzak KA, Gilbert TW, Wang JH: A multi-station dynamic-culture force monitor system to study cell mechanobiology. Med Eng Phys. 2004, 26 (4): 355-358. 10.1016/j.medengphy.2003.10.004.CrossRefPubMed
24.
go back to reference Garvin J, Qi J, Maloney M, Banes AJ: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Engineering. 2003, 9 (5): 967-979. 10.1089/107632703322495619.CrossRefPubMed Garvin J, Qi J, Maloney M, Banes AJ: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Engineering. 2003, 9 (5): 967-979. 10.1089/107632703322495619.CrossRefPubMed
25.
go back to reference Yates KE, Allemann F, Glowacki J: Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Bank. 2005, 6 (1): 45-54. 10.1007/s10561-005-5810-0.CrossRefPubMedPubMedCentral Yates KE, Allemann F, Glowacki J: Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes. Cell Tissue Bank. 2005, 6 (1): 45-54. 10.1007/s10561-005-5810-0.CrossRefPubMedPubMedCentral
26.
go back to reference Ingber D: Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991, 3 (5): 841-848. 10.1016/0955-0674(91)90058-7.CrossRefPubMed Ingber D: Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991, 3 (5): 841-848. 10.1016/0955-0674(91)90058-7.CrossRefPubMed
27.
go back to reference Burridge K, Chrzanowska-Wodnicka M: Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996, 12: 463-518. 10.1146/annurev.cellbio.12.1.463.CrossRefPubMed Burridge K, Chrzanowska-Wodnicka M: Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996, 12: 463-518. 10.1146/annurev.cellbio.12.1.463.CrossRefPubMed
28.
go back to reference Kolega J, Janson LW, Taylor DL: The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol. 1991, 114 (5): 993-1003. 10.1083/jcb.114.5.993.CrossRefPubMed Kolega J, Janson LW, Taylor DL: The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol. 1991, 114 (5): 993-1003. 10.1083/jcb.114.5.993.CrossRefPubMed
29.
go back to reference Sanger JW, Sanger JM, Jockusch BM: Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol. 1983, 96 (4): 961-969. 10.1083/jcb.96.4.961.CrossRefPubMed Sanger JW, Sanger JM, Jockusch BM: Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol. 1983, 96 (4): 961-969. 10.1083/jcb.96.4.961.CrossRefPubMed
30.
go back to reference Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, et al: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001, 3 (5): 466-472. 10.1038/35074532.CrossRefPubMed Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, et al: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 2001, 3 (5): 466-472. 10.1038/35074532.CrossRefPubMed
31.
32.
go back to reference Li F, Li B, Wang QM, Wang JH: Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton. 2008, 65 (4): 332-341. 10.1002/cm.20263.CrossRefPubMed Li F, Li B, Wang QM, Wang JH: Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton. 2008, 65 (4): 332-341. 10.1002/cm.20263.CrossRefPubMed
33.
go back to reference Wang HB, Dembo M, Wang YL: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 2000, 279 (5): C1345-1350.PubMed Wang HB, Dembo M, Wang YL: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 2000, 279 (5): C1345-1350.PubMed
34.
go back to reference Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J. 2006, 90 (10): 3762-3773. 10.1529/biophysj.105.071506.CrossRefPubMedPubMedCentral Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J. 2006, 90 (10): 3762-3773. 10.1529/biophysj.105.071506.CrossRefPubMedPubMedCentral
36.
go back to reference Rosel D, Brabek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, Bicanova K, Kollmannsberger P, Pankova D, Vesely P, et al: Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008, 6 (9): 1410-1420. 10.1158/1541-7786.MCR-07-2174.CrossRefPubMed Rosel D, Brabek J, Tolde O, Mierke CT, Zitterbart DP, Raupach C, Bicanova K, Kollmannsberger P, Pankova D, Vesely P, et al: Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008, 6 (9): 1410-1420. 10.1158/1541-7786.MCR-07-2174.CrossRefPubMed
37.
go back to reference Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol. 2001, 153 (4): 881-888. 10.1083/jcb.153.4.881.CrossRefPubMedPubMedCentral Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol. 2001, 153 (4): 881-888. 10.1083/jcb.153.4.881.CrossRefPubMedPubMedCentral
38.
go back to reference Ingber DE: Mechanobiology and diseases of mechanotransduction. Annals of Medicine. 2003, 35 (8): 564-577. 10.1080/07853890310016333.CrossRefPubMed Ingber DE: Mechanobiology and diseases of mechanotransduction. Annals of Medicine. 2003, 35 (8): 564-577. 10.1080/07853890310016333.CrossRefPubMed
39.
go back to reference Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K: Traction forces generated by locomoting keratocytes. J Cell Biol. 1994, 127 (6 Pt 2): 1957-1964. 10.1083/jcb.127.6.1957.CrossRefPubMed Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K: Traction forces generated by locomoting keratocytes. J Cell Biol. 1994, 127 (6 Pt 2): 1957-1964. 10.1083/jcb.127.6.1957.CrossRefPubMed
40.
go back to reference Sawhney RK, Howard J: Molecular dissection of the fibroblast-traction machinery. Cell Motil Cytoskeleton. 2004, 58 (3): 175-185. 10.1002/cm.20004.CrossRefPubMed Sawhney RK, Howard J: Molecular dissection of the fibroblast-traction machinery. Cell Motil Cytoskeleton. 2004, 58 (3): 175-185. 10.1002/cm.20004.CrossRefPubMed
41.
go back to reference Eckes B, Krieg T: Regulation of connective tissue homeostasis in the skin by mechanical forces. Clin Exp Rheumatol. 2004, 22 (3 Suppl 33): S73-76.PubMed Eckes B, Krieg T: Regulation of connective tissue homeostasis in the skin by mechanical forces. Clin Exp Rheumatol. 2004, 22 (3 Suppl 33): S73-76.PubMed
42.
go back to reference Harris AK: Cell motility and the problem of anatomical homeostasis. J Cell Sci Suppl. 1987, 8: 121-140.CrossRefPubMed Harris AK: Cell motility and the problem of anatomical homeostasis. J Cell Sci Suppl. 1987, 8: 121-140.CrossRefPubMed
43.
go back to reference Tranquillo RT, Durrani MA, Moon AG: Tissue Engineering Science - Consequences of Cell Traction Force. Cytotechnology. 1992, 10 (3): 225-250. 10.1007/BF00146673.CrossRefPubMed Tranquillo RT, Durrani MA, Moon AG: Tissue Engineering Science - Consequences of Cell Traction Force. Cytotechnology. 1992, 10 (3): 225-250. 10.1007/BF00146673.CrossRefPubMed
44.
go back to reference Harris AK, Stopak D, Wild P: Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981, 290 (5803): 249-251. 10.1038/290249a0.CrossRefPubMed Harris AK, Stopak D, Wild P: Fibroblast traction as a mechanism for collagen morphogenesis. Nature. 1981, 290 (5803): 249-251. 10.1038/290249a0.CrossRefPubMed
45.
go back to reference Ingber DE: Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997, 59: 575-599. 10.1146/annurev.physiol.59.1.575.CrossRefPubMed Ingber DE: Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997, 59: 575-599. 10.1146/annurev.physiol.59.1.575.CrossRefPubMed
46.
go back to reference Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004, 166 (6): 877-887. 10.1083/jcb.200405004.CrossRefPubMedPubMedCentral Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004, 166 (6): 877-887. 10.1083/jcb.200405004.CrossRefPubMedPubMedCentral
47.
go back to reference Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE: Cell responses to the mechanochemical microenvironment--implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev. 2007, 59 (13): 1329-1339. 10.1016/j.addr.2007.08.007.CrossRefPubMedPubMedCentral Rehfeldt F, Engler AJ, Eckhardt A, Ahmed F, Discher DE: Cell responses to the mechanochemical microenvironment--implications for regenerative medicine and drug delivery. Adv Drug Deliv Rev. 2007, 59 (13): 1329-1339. 10.1016/j.addr.2007.08.007.CrossRefPubMedPubMedCentral
48.
go back to reference Yang GG, Crawford RC, Wang JHC: Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of Biomechanics. 2004, 37 (10): 1543-1550. 10.1016/j.jbiomech.2004.01.005.CrossRefPubMed Yang GG, Crawford RC, Wang JHC: Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of Biomechanics. 2004, 37 (10): 1543-1550. 10.1016/j.jbiomech.2004.01.005.CrossRefPubMed
49.
go back to reference Barkhausen T, van Griensven M, Zeichen J, Bosch U: Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol. 2003, 55 (2-3): 153-158. 10.1078/0940-2993-00302.CrossRefPubMed Barkhausen T, van Griensven M, Zeichen J, Bosch U: Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol. 2003, 55 (2-3): 153-158. 10.1078/0940-2993-00302.CrossRefPubMed
50.
go back to reference He Y, Macarak EJ, Korostoff JM, Howard PS: Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res. 2004, 45 (1): 28-39. 10.1080/03008200490278124.CrossRefPubMed He Y, Macarak EJ, Korostoff JM, Howard PS: Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res. 2004, 45 (1): 28-39. 10.1080/03008200490278124.CrossRefPubMed
51.
go back to reference Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, Woo SL: Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connective Tissue Research. 2003, 44 (3-4): 128-133. 10.1080/03008200390223909.CrossRefPubMed Wang JH, Jia F, Yang G, Yang S, Campbell BH, Stone D, Woo SL: Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connective Tissue Research. 2003, 44 (3-4): 128-133. 10.1080/03008200390223909.CrossRefPubMed
52.
go back to reference Yang G, Im HJ, Wang JH: Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005, 363: 166-172. 10.1016/j.gene.2005.08.006.CrossRefPubMedPubMedCentral Yang G, Im HJ, Wang JH: Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 2005, 363: 166-172. 10.1016/j.gene.2005.08.006.CrossRefPubMedPubMedCentral
53.
go back to reference Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N: Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 2004, 50 (11): 3541-3548. 10.1002/art.20601.CrossRefPubMed Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N: Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 2004, 50 (11): 3541-3548. 10.1002/art.20601.CrossRefPubMed
54.
go back to reference Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16 (2): 270-272.PubMed Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16 (2): 270-272.PubMed
55.
go back to reference Park JS, Huang NF, Kurpinski KT, Patel S, Hsu S, Li S: Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci. 2007, 12: 5098-5116. 10.2741/2551.CrossRefPubMed Park JS, Huang NF, Kurpinski KT, Patel S, Hsu S, Li S: Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci. 2007, 12: 5098-5116. 10.2741/2551.CrossRefPubMed
56.
go back to reference Huang H, Kamm RD, Lee RT: Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol. 2004, 287 (1): C1-11. 10.1152/ajpcell.00559.2003.CrossRefPubMed Huang H, Kamm RD, Lee RT: Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol. 2004, 287 (1): C1-11. 10.1152/ajpcell.00559.2003.CrossRefPubMed
57.
go back to reference Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH: Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res. 2008, 49 (1): 7-14. 10.1080/03008200701818561.CrossRefPubMed Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH: Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res. 2008, 49 (1): 7-14. 10.1080/03008200701818561.CrossRefPubMed
58.
go back to reference Zhang J, Wang JH: Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010, 28 (5): 639-643.PubMed Zhang J, Wang JH: Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2010, 28 (5): 639-643.PubMed
59.
go back to reference Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP: From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009, 19 (4): 500-510. 10.1111/j.1600-0838.2009.00986.x.CrossRefPubMed Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP: From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009, 19 (4): 500-510. 10.1111/j.1600-0838.2009.00986.x.CrossRefPubMed
60.
go back to reference Szczodry M, Zhang J, Lim C, Davitt HL, Yeager T, Fu FH, Wang JH: Treadmill running exercise results in the presence of numerous myofibroblasts in mouse patellar tendons. J Orthop Res. 2009, 27 (10): 1373-1378. 10.1002/jor.20878.CrossRefPubMedPubMedCentral Szczodry M, Zhang J, Lim C, Davitt HL, Yeager T, Fu FH, Wang JH: Treadmill running exercise results in the presence of numerous myofibroblasts in mouse patellar tendons. J Orthop Res. 2009, 27 (10): 1373-1378. 10.1002/jor.20878.CrossRefPubMedPubMedCentral
61.
go back to reference Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H: Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008, 26 (1): 1-9. 10.1002/jor.20456.CrossRefPubMed Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C, Awad H: Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res. 2008, 26 (1): 1-9. 10.1002/jor.20456.CrossRefPubMed
62.
go back to reference Guilak F, Butler DL, Goldstein SA: Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clinical Orthopaedics & Related Research. 2001, S295-305. 391 Suppl Guilak F, Butler DL, Goldstein SA: Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clinical Orthopaedics & Related Research. 2001, S295-305. 391 Suppl
63.
go back to reference Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL: Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006, 12 (8): 2291-2300. 10.1089/ten.2006.12.2291.CrossRefPubMed Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL: Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006, 12 (8): 2291-2300. 10.1089/ten.2006.12.2291.CrossRefPubMed
64.
go back to reference Kim BS, Nikolovski J, Bonadio J, Smiley E, Mooney DJ: Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res. 1999, 251 (2): 318-328. 10.1006/excr.1999.4595.CrossRefPubMed Kim BS, Nikolovski J, Bonadio J, Smiley E, Mooney DJ: Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res. 1999, 251 (2): 318-328. 10.1006/excr.1999.4595.CrossRefPubMed
65.
go back to reference Lavagnino M, Arnoczky SP: In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. Journal of Orthopaedic Research. 2005, 23 (5): 1211-1218. 10.1016/j.orthres.2005.04.001.CrossRefPubMed Lavagnino M, Arnoczky SP: In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. Journal of Orthopaedic Research. 2005, 23 (5): 1211-1218. 10.1016/j.orthres.2005.04.001.CrossRefPubMed
66.
go back to reference Ingber DE: Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol. 2006, 50 (2-3): 255-266. 10.1387/ijdb.052044di.CrossRefPubMed Ingber DE: Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol. 2006, 50 (2-3): 255-266. 10.1387/ijdb.052044di.CrossRefPubMed
67.
68.
go back to reference Day C: Mechanical force may determine the final size of tissues. Phys Today. 2007, 60 (4): 20-21. 10.1063/1.2731960.CrossRef Day C: Mechanical force may determine the final size of tissues. Phys Today. 2007, 60 (4): 20-21. 10.1063/1.2731960.CrossRef
69.
go back to reference Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS: Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA. 2005, 102 (33): 11594-11599. 10.1073/pnas.0502575102.CrossRefPubMedPubMedCentral Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS: Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA. 2005, 102 (33): 11594-11599. 10.1073/pnas.0502575102.CrossRefPubMedPubMedCentral
70.
go back to reference Li B, Li F, Puskar KM, Wang JH: Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J Biomech. 2009, 42 (11): 1622-1627. 10.1016/j.jbiomech.2009.04.033.CrossRefPubMedPubMedCentral Li B, Li F, Puskar KM, Wang JH: Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J Biomech. 2009, 42 (11): 1622-1627. 10.1016/j.jbiomech.2009.04.033.CrossRefPubMedPubMedCentral
71.
go back to reference Ruiz SA, Chen CS: Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures. Stem Cells. 2008, 26 (11): 2921-2927. 10.1634/stemcells.2008-0432.CrossRefPubMedPubMedCentral Ruiz SA, Chen CS: Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures. Stem Cells. 2008, 26 (11): 2921-2927. 10.1634/stemcells.2008-0432.CrossRefPubMedPubMedCentral
72.
go back to reference Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric control of cell life and death. Science. 1997, 276 (5317): 1425-1428. 10.1126/science.276.5317.1425.CrossRefPubMed Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric control of cell life and death. Science. 1997, 276 (5317): 1425-1428. 10.1126/science.276.5317.1425.CrossRefPubMed
73.
go back to reference Juliano RL, Haskill S: Signal transduction from the extracellular matrix. Journal of Cell Biology. 1993, 120 (3): 577-585. 10.1083/jcb.120.3.577.CrossRefPubMed Juliano RL, Haskill S: Signal transduction from the extracellular matrix. Journal of Cell Biology. 1993, 120 (3): 577-585. 10.1083/jcb.120.3.577.CrossRefPubMed
74.
go back to reference Maniotis AJ, Chen CS, Ingber DE: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA. 1997, 94 (3): 849-854. 10.1073/pnas.94.3.849.CrossRefPubMedPubMedCentral Maniotis AJ, Chen CS, Ingber DE: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA. 1997, 94 (3): 849-854. 10.1073/pnas.94.3.849.CrossRefPubMedPubMedCentral
75.
go back to reference Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992, 69 (1): 11-25. 10.1016/0092-8674(92)90115-S.CrossRefPubMed Hynes RO: Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992, 69 (1): 11-25. 10.1016/0092-8674(92)90115-S.CrossRefPubMed
76.
go back to reference Ingber DE: Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science. 1993, 104 (Pt 3): 613-627.PubMed Ingber DE: Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science. 1993, 104 (Pt 3): 613-627.PubMed
77.
go back to reference Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP: Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993, 123 (4): 977-991. 10.1083/jcb.123.4.977.CrossRefPubMed Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP: Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993, 123 (4): 977-991. 10.1083/jcb.123.4.977.CrossRefPubMed
78.
go back to reference Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993, 260 (5111): 1124-1127. 10.1126/science.7684161.CrossRefPubMed Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993, 260 (5111): 1124-1127. 10.1126/science.7684161.CrossRefPubMed
79.
go back to reference Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S: Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis & Vascular Biology. 2002, 22 (1): 69-75.CrossRef Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S: Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arteriosclerosis, Thrombosis & Vascular Biology. 2002, 22 (1): 69-75.CrossRef
80.
go back to reference Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N: Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA. 2008, 105 (18): 6626-6631. 10.1073/pnas.0711704105.CrossRefPubMedPubMedCentral Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N: Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA. 2008, 105 (18): 6626-6631. 10.1073/pnas.0711704105.CrossRefPubMedPubMedCentral
81.
go back to reference Clark CB, McKnight NL, Frangos JA: Strain and strain rate activation of G proteins in human endothelial cells. Biochemical & Biophysical Research Communications. 2002, 299 (2): 258-262.CrossRef Clark CB, McKnight NL, Frangos JA: Strain and strain rate activation of G proteins in human endothelial cells. Biochemical & Biophysical Research Communications. 2002, 299 (2): 258-262.CrossRef
82.
go back to reference Chachisvilis M, Zhang YL, Frangos JA: G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA. 2006, 103 (42): 15463-15468. 10.1073/pnas.0607224103.CrossRefPubMedPubMedCentral Chachisvilis M, Zhang YL, Frangos JA: G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA. 2006, 103 (42): 15463-15468. 10.1073/pnas.0607224103.CrossRefPubMedPubMedCentral
83.
go back to reference Janmey PA, Weitz DA: Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci. 2004, 29 (7): 364-370. 10.1016/j.tibs.2004.05.003.CrossRefPubMed Janmey PA, Weitz DA: Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci. 2004, 29 (7): 364-370. 10.1016/j.tibs.2004.05.003.CrossRefPubMed
84.
go back to reference Sigurdson W, Ruknudin A, Sachs F: Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. American Journal of Physiology. 1992, 262 (4 Pt 2): H1110-1115.PubMed Sigurdson W, Ruknudin A, Sachs F: Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. American Journal of Physiology. 1992, 262 (4 Pt 2): H1110-1115.PubMed
85.
go back to reference Munevar S, Wang YL, Dembo M: Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci. 2004, 117 (Pt 1): 85-92. 10.1242/jcs.00795.CrossRefPubMed Munevar S, Wang YL, Dembo M: Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci. 2004, 117 (Pt 1): 85-92. 10.1242/jcs.00795.CrossRefPubMed
86.
go back to reference French AS, Stockbridge LL: Potassium channels in human and avian fibroblasts. Proc R Soc Lond B Biol Sci. 1988, 232 (1269): 395-412. 10.1098/rspb.1988.0003.CrossRefPubMed French AS, Stockbridge LL: Potassium channels in human and avian fibroblasts. Proc R Soc Lond B Biol Sci. 1988, 232 (1269): 395-412. 10.1098/rspb.1988.0003.CrossRefPubMed
87.
go back to reference Wall ME, Banes AJ: Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005, 5 (1): 70-84.PubMed Wall ME, Banes AJ: Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 2005, 5 (1): 70-84.PubMed
88.
go back to reference Ruknudin A, Sachs F, Bustamante JO: Stretch-activated ion channels in tissue-cultured chick heart. American Journal of Physiology. 1993, 264 (3 Pt 2): H960-972.PubMed Ruknudin A, Sachs F, Bustamante JO: Stretch-activated ion channels in tissue-cultured chick heart. American Journal of Physiology. 1993, 264 (3 Pt 2): H960-972.PubMed
89.
go back to reference Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR: Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 2007, 104 (33): 13325-13330. 10.1073/pnas.0700636104.CrossRefPubMedPubMedCentral Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR: Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 2007, 104 (33): 13325-13330. 10.1073/pnas.0700636104.CrossRefPubMedPubMedCentral
90.
go back to reference Hinz B: Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol. 2006, 85 (3-4): 175-181. 10.1016/j.ejcb.2005.09.004.CrossRefPubMed Hinz B: Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur J Cell Biol. 2006, 85 (3-4): 175-181. 10.1016/j.ejcb.2005.09.004.CrossRefPubMed
91.
go back to reference Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM: The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol. 2002, 319 (2): 433-447. 10.1016/S0022-2836(02)00306-6.CrossRefPubMed Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM: The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol. 2002, 319 (2): 433-447. 10.1016/S0022-2836(02)00306-6.CrossRefPubMed
92.
go back to reference Friedland JC, Lee MH, Boettiger D: Mechanically activated integrin switch controls alpha5beta1 function. Science. 2009, 323 (5914): 642-644. 10.1126/science.1168441.CrossRefPubMed Friedland JC, Lee MH, Boettiger D: Mechanically activated integrin switch controls alpha5beta1 function. Science. 2009, 323 (5914): 642-644. 10.1126/science.1168441.CrossRefPubMed
Metadata
Title
Mechanics rules cell biology
Authors
James HC Wang
Bin Li
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2010
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-2-16

Other articles of this Issue 1/2010

BMC Sports Science, Medicine and Rehabilitation 1/2010 Go to the issue