Skip to main content
Top
Published in: Trials 1/2018

Open Access 01-12-2018 | Study protocol

Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: a randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine

Authors: Nicolas H. Hart, Daniel A. Galvão, Christobel Saunders, Dennis R. Taaffe, Kynan T. Feeney, Nigel A. Spry, Daphne Tsoi, Hilary Martin, Raphael Chee, Tim Clay, Andrew D. Redfern, Robert U. Newton

Published in: Trials | Issue 1/2018

Login to get access

Abstract

Background

Skeletal metastases present a major challenge for clinicians, representing an advanced and typically incurable stage of cancer. Bone is also the most common location for metastatic breast carcinoma, with skeletal lesions identified in over 80% of patients with advanced breast cancer. Preclinical models have demonstrated the ability of mechanical stimulation to suppress tumour formation and promote skeletal preservation at bone sites with osteolytic lesions, generating modulatory interference of tumour-driven bone remodelling. Preclinical studies have also demonstrated anti-cancer effects through exercise by minimising tumour hypoxia, normalising tumour vasculature and increasing tumoural blood perfusion. This study proposes to explore the promising role of targeted exercise to suppress tumour growth while concomitantly delivering broader health benefits in patients with advanced breast cancer with osteolytic bone metastases.

Methods

This single-blinded, two-armed, randomised and controlled pilot study aims to establish the safety, feasibility and efficacy of an individually tailored, modular multi-modal exercise programme incorporating spinal isometric training (targeted muscle contraction) in 40 women with advanced breast cancer and stable osteolytic spinal metastases. Participants will be randomly assigned to exercise or usual medical care. The intervention arm will receive a 3-month clinically supervised exercise programme, which if proven to be safe and efficacious will be offered to the control-arm patients following study completion. Primary endpoints (programme feasibility, safety, tolerance and adherence) and secondary endpoints (tumour morphology, serum tumour biomarkers, bone metabolism, inflammation, anthropometry, body composition, bone pain, physical function and patient-reported outcomes) will be measured at baseline and following the intervention.

Discussion

Exercise medicine may positively alter tumour biology through numerous mechanical and non-mechanical mechanisms. This randomised controlled pilot trial will explore the preliminary effects of targeted exercise on tumour morphology and circulating metastatic tumour biomarkers using an osteolytic skeletal metastases model in patients with breast cancer. The study is principally aimed at establishing feasibility and safety. If proven to be safe and feasible, results from this study could have important implications for the delivery of this exercise programme to patients with advanced cancer and sclerotic skeletal metastases or with skeletal lesions present in haematological cancers (such as osteolytic lesions in multiple myeloma), for which future research is recommended.

Trial registration

anzctr.​org.​au, ACTRN-12616001368426. Registered on 4 October 2016.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia. 2005;10(2):169–80.PubMedCrossRef Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia. 2005;10(2):169–80.PubMedCrossRef
2.
go back to reference Zacharia B, Subramaniam D, Joy J. Skeletal metastasis—an epidemiological study. Ind J Surg Oncol. 2018;9(1):46–51.CrossRef Zacharia B, Subramaniam D, Joy J. Skeletal metastasis—an epidemiological study. Ind J Surg Oncol. 2018;9(1):46–51.CrossRef
4.
go back to reference Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.PubMedCrossRef Weigelt B, Peterse JL, Van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.PubMedCrossRef
5.
go back to reference Barney LE, Jansen LE, Polio SR, Galarza S, Lynch ME, Peyton SR. The predictive link between matrix and metastasis. Curr Opin Chem Eng. 2016;11:85–93.PubMedPubMedCentralCrossRef Barney LE, Jansen LE, Polio SR, Galarza S, Lynch ME, Peyton SR. The predictive link between matrix and metastasis. Curr Opin Chem Eng. 2016;11:85–93.PubMedPubMedCentralCrossRef
6.
go back to reference Wang N, Reeves KJ, Brown HK, Fowles AC, Docherty FE, Ottewell PD, et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp Clin Cancer Res. 2015;34(1):124.PubMedPubMedCentralCrossRef Wang N, Reeves KJ, Brown HK, Fowles AC, Docherty FE, Ottewell PD, et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J Exp Clin Cancer Res. 2015;34(1):124.PubMedPubMedCentralCrossRef
8.
go back to reference Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: Biology and engineering considerations. Adv Drug Deliv Rev. 2014;79–80:119–34.PubMedCrossRef Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: Biology and engineering considerations. Adv Drug Deliv Rev. 2014;79–80:119–34.PubMedCrossRef
9.
go back to reference Høilund-Carlsen PF, Hess S, Werner TJ, Alavi A. Cancer metastasizes to the bone marrow and not to the bone: time for a paradigm shift! Eur J Nucl Med Mol Imaging. 2018;45(6):893–7.PubMedPubMedCentralCrossRef Høilund-Carlsen PF, Hess S, Werner TJ, Alavi A. Cancer metastasizes to the bone marrow and not to the bone: time for a paradigm shift! Eur J Nucl Med Mol Imaging. 2018;45(6):893–7.PubMedPubMedCentralCrossRef
10.
go back to reference Hata K, Yoneda T. Bone metastases of breast cancer. Clin Calcium. 2014;24(8):1177–84.PubMed Hata K, Yoneda T. Bone metastases of breast cancer. Clin Calcium. 2014;24(8):1177–84.PubMed
11.
go back to reference Cawthorn WP, Scheller EL. Bone marrow adipose tissue: formation, function, and impact on health and disease. Front Endocrinol. 2017;8:112.CrossRef Cawthorn WP, Scheller EL. Bone marrow adipose tissue: formation, function, and impact on health and disease. Front Endocrinol. 2017;8:112.CrossRef
12.
go back to reference Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Nueronal Interact. 2017;17(3):114. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Nueronal Interact. 2017;17(3):114.
13.
go back to reference Lynch ME, Brooks D, Mohanan S, Lee MJ, Polamraju P, Dent K, et al. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model. J Bone Miner Res. 2013;28(11):2357–67.PubMedCrossRef Lynch ME, Brooks D, Mohanan S, Lee MJ, Polamraju P, Dent K, et al. In vivo tibial compression decreases osteolysis and tumor formation in a human metastatic breast cancer model. J Bone Miner Res. 2013;28(11):2357–67.PubMedCrossRef
14.
go back to reference Hart NH, Newton RU, Spry NA, Taaffe DR, Chambers SK, Feeney KT, et al. Can exercise suppress tumour growth in advanced prostate cancer patients with sclerotic bone metastases? A randomised, controlled study protocol examining feasibility, safety and efficacy. BMJ Open. 2017;7(5):e014458.PubMedPubMedCentralCrossRef Hart NH, Newton RU, Spry NA, Taaffe DR, Chambers SK, Feeney KT, et al. Can exercise suppress tumour growth in advanced prostate cancer patients with sclerotic bone metastases? A randomised, controlled study protocol examining feasibility, safety and efficacy. BMJ Open. 2017;7(5):e014458.PubMedPubMedCentralCrossRef
15.
go back to reference Rizzoli R, Body J-J, Brandi M-L, Cannata-Andia J, Chappard D, El Maghraoui A, et al. Cancer-associated bone disease. Osteoporos Int. 2013;24(12):2929–53.PubMedPubMedCentralCrossRef Rizzoli R, Body J-J, Brandi M-L, Cannata-Andia J, Chappard D, El Maghraoui A, et al. Cancer-associated bone disease. Osteoporos Int. 2013;24(12):2929–53.PubMedPubMedCentralCrossRef
16.
go back to reference Sanna-Maria K, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(3):834–9. Sanna-Maria K, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(3):834–9.
17.
18.
go back to reference Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20):6243s–9s.PubMedCrossRef Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20):6243s–9s.PubMedCrossRef
21.
go back to reference Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev. 2011;5(2):93–102.PubMedCrossRef Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P. Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev. 2011;5(2):93–102.PubMedCrossRef
22.
go back to reference Roato I, Ferracini R. Cancer stem cells, bone and tumor microenvironment: key players in bone metastases. Cancers. 2018;10(2):56.PubMedCentralCrossRef Roato I, Ferracini R. Cancer stem cells, bone and tumor microenvironment: key players in bone metastases. Cancers. 2018;10(2):56.PubMedCentralCrossRef
23.
go back to reference Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol. 2013;9(3):e1002983.PubMedPubMedCentralCrossRef Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol. 2013;9(3):e1002983.PubMedPubMedCentralCrossRef
24.
go back to reference Banerjee S, Pillai M, Knapp F. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015;115(8):2934–74.PubMedCrossRef Banerjee S, Pillai M, Knapp F. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015;115(8):2934–74.PubMedCrossRef
25.
go back to reference Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios C, et al. 3rd ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 3). Ann Oncol. 2017;28(1):16–33.PubMed Cardoso F, Costa A, Senkus E, Aapro M, André F, Barrios C, et al. 3rd ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 3). Ann Oncol. 2017;28(1):16–33.PubMed
26.
go back to reference Cheal S, Fung E, Xu H, Guo H-f, Patel M, Bell M, et al. Comparative efficacy and toxicity of 177Lu-vs 90Y-theranostic anti-HER2/anti-DOTA (metal) pretargeted radioimmunotherapy (anti-HER2 DOTA-PRIT) of HER2-expressing breast cancer xenografts with curative intent. J Nuclear Med. 2017;58(Suppl 1):54. Cheal S, Fung E, Xu H, Guo H-f, Patel M, Bell M, et al. Comparative efficacy and toxicity of 177Lu-vs 90Y-theranostic anti-HER2/anti-DOTA (metal) pretargeted radioimmunotherapy (anti-HER2 DOTA-PRIT) of HER2-expressing breast cancer xenografts with curative intent. J Nuclear Med. 2017;58(Suppl 1):54.
27.
go back to reference Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.PubMedCrossRef Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.PubMedCrossRef
28.
go back to reference Giordano SH, Temin S, Kirshner JJ, Chandarlapaty S, Crews JR, Davidson NE, et al. Systemic therapy for patients with advanced human epidermal growth factor receptor 2–positive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(19):2078–99.PubMedPubMedCentralCrossRef Giordano SH, Temin S, Kirshner JJ, Chandarlapaty S, Crews JR, Davidson NE, et al. Systemic therapy for patients with advanced human epidermal growth factor receptor 2–positive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(19):2078–99.PubMedPubMedCentralCrossRef
29.
go back to reference Loftus LS, Edwards-Bennett S, Sokol GH. Systemic therapy for bone metastases. Cancer Control. 2012;19(2):145–53.PubMedCrossRef Loftus LS, Edwards-Bennett S, Sokol GH. Systemic therapy for bone metastases. Cancer Control. 2012;19(2):145–53.PubMedCrossRef
30.
go back to reference Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich SE, et al. Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(1):4–12.PubMedCrossRef Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich SE, et al. Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol. 2017;7(1):4–12.PubMedCrossRef
31.
go back to reference Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.PubMedCrossRef Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2− advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84.PubMedCrossRef
32.
go back to reference Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29(9):1221–7.PubMedCrossRef Van Poznak CH, Temin S, Yee GC, Janjan NA, Barlow WE, Biermann JS, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29(9):1221–7.PubMedCrossRef
33.
go back to reference O'Carrigan B, Wong MH, Willson ML, Stockler MR, Pavlakis N, Goodwin A. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2017;10:CD003474.PubMed O'Carrigan B, Wong MH, Willson ML, Stockler MR, Pavlakis N, Goodwin A. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2017;10:CD003474.PubMed
34.
go back to reference Stopeck AT, Lipton A, Body J-J, Steger GG, Tonkin K, De Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.PubMedCrossRef Stopeck AT, Lipton A, Body J-J, Steger GG, Tonkin K, De Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.PubMedCrossRef
35.
go back to reference Diab DL, Watts NB. Bisphosphonate drug holiday: who, when and how long. London: SAGE Publications Sage UK; 2013. Diab DL, Watts NB. Bisphosphonate drug holiday: who, when and how long. London: SAGE Publications Sage UK; 2013.
36.
go back to reference Silverman S, Adachi J, Dennison E. Bisphosphonate drug holidays: we reap what we sow. Osteoporos Int. 2016;27(3):849–52.PubMedCrossRef Silverman S, Adachi J, Dennison E. Bisphosphonate drug holidays: we reap what we sow. Osteoporos Int. 2016;27(3):849–52.PubMedCrossRef
37.
go back to reference Vannucci L, Brandi ML. Pharmacological management of osteoporosis–when to treat and when to stop. Expert Rev Clin Pharmacol. 2016;9(10):1315–22.CrossRefPubMed Vannucci L, Brandi ML. Pharmacological management of osteoporosis–when to treat and when to stop. Expert Rev Clin Pharmacol. 2016;9(10):1315–22.CrossRefPubMed
38.
go back to reference Ireland A, Rittweger J, Degens H. The influence of muscular action on bone strength via exercise. Clin Rev Bone Mineral Metab. 2014;12(2):93–102.CrossRef Ireland A, Rittweger J, Degens H. The influence of muscular action on bone strength via exercise. Clin Rev Bone Mineral Metab. 2014;12(2):93–102.CrossRef
39.
go back to reference Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int. 2010;21(10):1687–94.PubMedCrossRef Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int. 2010;21(10):1687–94.PubMedCrossRef
40.
go back to reference Liu B, Han S, Hedrick BP, Modarres-Sadeghi Y, Lynch ME. Perfusion applied to a 3D model of bone metastasis results in uniformly dispersed mechanical stimuli. Biotechnol Bioeng. 2018;115(4):1076–85.PubMedCrossRef Liu B, Han S, Hedrick BP, Modarres-Sadeghi Y, Lynch ME. Perfusion applied to a 3D model of bone metastasis results in uniformly dispersed mechanical stimuli. Biotechnol Bioeng. 2018;115(4):1076–85.PubMedCrossRef
41.
go back to reference Lynch ME, Chiou AE, Lee MJ, Marcott SC, Polamraju PV, Lee Y, et al. Three-dimensional mechanical loading modulates the osteogenic response of mesenchymal stem cells to tumor-derived soluble signals. Tissue Eng A. 2016;22(15–16):1006–15.CrossRef Lynch ME, Chiou AE, Lee MJ, Marcott SC, Polamraju PV, Lee Y, et al. Three-dimensional mechanical loading modulates the osteogenic response of mesenchymal stem cells to tumor-derived soluble signals. Tissue Eng A. 2016;22(15–16):1006–15.CrossRef
42.
go back to reference Cardozo CP, Graham ZA. Muscle–bone interactions: movement in the field of mechano–humoral coupling of muscle and bone. Ann N Y Acad Sci. 2017;1402(1):10–7.PubMedCrossRef Cardozo CP, Graham ZA. Muscle–bone interactions: movement in the field of mechano–humoral coupling of muscle and bone. Ann N Y Acad Sci. 2017;1402(1):10–7.PubMedCrossRef
44.
go back to reference Regan JN, Trivedi T, Guise TA, Waning DL. The role of TGFβ in bone-muscle crosstalk. Curr Osteoporosis Rep. 2017;15(1):18–23.CrossRef Regan JN, Trivedi T, Guise TA, Waning DL. The role of TGFβ in bone-muscle crosstalk. Curr Osteoporosis Rep. 2017;15(1):18–23.CrossRef
45.
go back to reference Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21(11):1262–71.PubMedPubMedCentralCrossRef Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21(11):1262–71.PubMedPubMedCentralCrossRef
46.
go back to reference Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harbor Perspect Med. 2017;7(11):a029793.CrossRef Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harbor Perspect Med. 2017;7(11):a029793.CrossRef
47.
go back to reference Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef
48.
go back to reference Hart NH, Galvão DA, Newton RU. Exercise medicine for advanced prostate cancer. Curr Opin Support Palliat Care. 2017;11(3):247–57.PubMedCrossRef Hart NH, Galvão DA, Newton RU. Exercise medicine for advanced prostate cancer. Curr Opin Support Palliat Care. 2017;11(3):247–57.PubMedCrossRef
49.
go back to reference Ruiz-Casado A, Martín-Ruiz A, Pérez LM, Provencio M, Fiuza-Luces C, Lucia A. Exercise and the hallmarks of cancer. Trends Cancer. 2017;3(6):423–41.PubMedCrossRef Ruiz-Casado A, Martín-Ruiz A, Pérez LM, Provencio M, Fiuza-Luces C, Lucia A. Exercise and the hallmarks of cancer. Trends Cancer. 2017;3(6):423–41.PubMedCrossRef
50.
go back to reference Galvão DA, Taaffe DR, Spry N, Gardiner RA, Taylor R, Risbridger GP, et al. Enhancing active surveillance of prostate cancer: the potential of exercise medicine. Nat Rev Urol. 2016;13(5):258.PubMedCrossRef Galvão DA, Taaffe DR, Spry N, Gardiner RA, Taylor R, Risbridger GP, et al. Enhancing active surveillance of prostate cancer: the potential of exercise medicine. Nat Rev Urol. 2016;13(5):258.PubMedCrossRef
51.
go back to reference Newton RU, Kenfield SA, Hart NH, Chan JM, Courneya KS, Catto J, et al. Intense exercise for survival among men with metastatic castrate-resistant prostate cancer (INTERVAL-GAP4): a multicentre, randomised, controlled phase III study protocol. BMJ Open. 2018;8(5):e022899.PubMedPubMedCentralCrossRef Newton RU, Kenfield SA, Hart NH, Chan JM, Courneya KS, Catto J, et al. Intense exercise for survival among men with metastatic castrate-resistant prostate cancer (INTERVAL-GAP4): a multicentre, randomised, controlled phase III study protocol. BMJ Open. 2018;8(5):e022899.PubMedPubMedCentralCrossRef
52.
go back to reference Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7.PubMedCrossRef Galvao DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340–7.PubMedCrossRef
54.
go back to reference Zopf E, Newton RU, Taaffe DR, Spry N, Cormie P, Joseph D, et al. Associations between aerobic exercise levels and physical and mental health outcomes in men with bone metastatic prostate cancer: a cross-sectional investigation. Eur J Cancer Care. 2017;26(6):e12575.CrossRef Zopf E, Newton RU, Taaffe DR, Spry N, Cormie P, Joseph D, et al. Associations between aerobic exercise levels and physical and mental health outcomes in men with bone metastatic prostate cancer: a cross-sectional investigation. Eur J Cancer Care. 2017;26(6):e12575.CrossRef
55.
go back to reference Cormie P, Newton RU, Spry N, Joseph D, Taaffe DR, Galvao DA. Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer Prostatic Dis. 2013;16(4):328–35.PubMedCrossRef Cormie P, Newton RU, Spry N, Joseph D, Taaffe DR, Galvao DA. Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer Prostatic Dis. 2013;16(4):328–35.PubMedCrossRef
56.
go back to reference Galvão DA, Taaffe DR, Cormie P, Spry N, Chambers SK, Peddle-McIntyre C, et al. Efficacy and safety of a modular multi-modal exercise program in prostate cancer patients with bone metastases: a randomized controlled trial. BMC Cancer. 2011;11(1):517.PubMedPubMedCentralCrossRef Galvão DA, Taaffe DR, Cormie P, Spry N, Chambers SK, Peddle-McIntyre C, et al. Efficacy and safety of a modular multi-modal exercise program in prostate cancer patients with bone metastases: a randomized controlled trial. BMC Cancer. 2011;11(1):517.PubMedPubMedCentralCrossRef
57.
go back to reference Galvao DA, Taaffe DR, Spry N, Cormie P, Joseph D, Chambers SK, et al. Exercise preserves physical function in prostate cancer patients with bone metastases. Med Sci Sports Exerc. 2018;50(3):393.PubMedCrossRef Galvao DA, Taaffe DR, Spry N, Cormie P, Joseph D, Chambers SK, et al. Exercise preserves physical function in prostate cancer patients with bone metastases. Med Sci Sports Exerc. 2018;50(3):393.PubMedCrossRef
58.
go back to reference Cormie P, Galvão DA, Spry N, Joseph D, Taaffe DR, Newton RU. Functional benefits are sustained after a program of supervised resistance exercise in cancer patients with bone metastases: longitudinal results of a pilot study. Support Care Cancer. 2014;22(6):1537–48.PubMedCrossRef Cormie P, Galvão DA, Spry N, Joseph D, Taaffe DR, Newton RU. Functional benefits are sustained after a program of supervised resistance exercise in cancer patients with bone metastases: longitudinal results of a pilot study. Support Care Cancer. 2014;22(6):1537–48.PubMedCrossRef
59.
go back to reference Rief H, Omlor G, Akbar M, Welzel T, Bruckner T, Rieken S, et al. Feasibility of isometric spinal muscle training in patients with bone metastases under radiation therapy-first results of a randomized pilot trial. BMC Cancer. 2014;14(1):67.PubMedPubMedCentralCrossRef Rief H, Omlor G, Akbar M, Welzel T, Bruckner T, Rieken S, et al. Feasibility of isometric spinal muscle training in patients with bone metastases under radiation therapy-first results of a randomized pilot trial. BMC Cancer. 2014;14(1):67.PubMedPubMedCentralCrossRef
60.
go back to reference Rief H, Petersen LC, Omlor G, Akbar M, Bruckner T, Rieken S, et al. The effect of resistance training during radiotherapy on spinal bone metastases in cancer patients–a randomized trial. Radiother Oncol. 2014;112(1):133–9.PubMedCrossRef Rief H, Petersen LC, Omlor G, Akbar M, Bruckner T, Rieken S, et al. The effect of resistance training during radiotherapy on spinal bone metastases in cancer patients–a randomized trial. Radiother Oncol. 2014;112(1):133–9.PubMedCrossRef
61.
go back to reference Ireland A, Rittweger J. Exercise for osteoporosis: how to navigate between overeagerness and defeatism. J Musculoskelet Neuronal Interact. 2017;17(3):155–61.PubMedPubMedCentral Ireland A, Rittweger J. Exercise for osteoporosis: how to navigate between overeagerness and defeatism. J Musculoskelet Neuronal Interact. 2017;17(3):155–61.PubMedPubMedCentral
62.
go back to reference Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.PubMedPubMedCentral Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.PubMedPubMedCentral
63.
go back to reference Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.PubMedPubMedCentralCrossRef Van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.PubMedPubMedCentralCrossRef
64.
go back to reference Cormie P, Galvão DA, Spry N, Joseph D, Chee R, Taaffe DR, et al. Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: a randomised controlled trial. BJU Int. 2015;115(2):256–66.PubMedCrossRef Cormie P, Galvão DA, Spry N, Joseph D, Chee R, Taaffe DR, et al. Can supervised exercise prevent treatment toxicity in patients with prostate cancer initiating androgen-deprivation therapy: a randomised controlled trial. BJU Int. 2015;115(2):256–66.PubMedCrossRef
65.
go back to reference Galvao D, Taaffe D, Spry N, Newton R. Exercise can prevent and even reverse adverse effects of androgen suppression treatment in men with prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(4):340.PubMedCrossRef Galvao D, Taaffe D, Spry N, Newton R. Exercise can prevent and even reverse adverse effects of androgen suppression treatment in men with prostate cancer. Prostate Cancer Prostatic Dis. 2007;10(4):340.PubMedCrossRef
66.
go back to reference Galvao DA, Spry N, Denham J, Taaffe DR, Cormie P, Joseph D, et al. A multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur Urol. 2014;65(5):856–64.PubMedCrossRef Galvao DA, Spry N, Denham J, Taaffe DR, Cormie P, Joseph D, et al. A multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur Urol. 2014;65(5):856–64.PubMedCrossRef
67.
go back to reference Galvão DA, Spry N, Taaffe DR, Denham J, Joseph D, Lamb DS, et al. A randomized controlled trial of an exercise intervention targeting cardiovascular and metabolic risk factors for prostate cancer patients from the RADAR trial. BMC Cancer. 2009;9(1):419.PubMedPubMedCentralCrossRef Galvão DA, Spry N, Taaffe DR, Denham J, Joseph D, Lamb DS, et al. A randomized controlled trial of an exercise intervention targeting cardiovascular and metabolic risk factors for prostate cancer patients from the RADAR trial. BMC Cancer. 2009;9(1):419.PubMedPubMedCentralCrossRef
68.
go back to reference Newton RU, Taaffe DR, Spry N, Cormie P, Chambers SK, Gardiner RA, et al. Can exercise ameliorate treatment toxicity during the initial phase of testosterone deprivation in prostate cancer patients? Is this more effective than delayed rehabilitation? BMC Cancer. 2012;12(1):432.PubMedPubMedCentralCrossRef Newton RU, Taaffe DR, Spry N, Cormie P, Chambers SK, Gardiner RA, et al. Can exercise ameliorate treatment toxicity during the initial phase of testosterone deprivation in prostate cancer patients? Is this more effective than delayed rehabilitation? BMC Cancer. 2012;12(1):432.PubMedPubMedCentralCrossRef
69.
go back to reference Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–7.PubMedCrossRef Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010;28(20):3271–7.PubMedCrossRef
70.
go back to reference Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, et al. Modulation of murine breast tumor vascularity, hypoxia, and chemotherapeutic response by exercise. JNCI. 2015;107(5):djv040.PubMedCrossRefPubMedCentral Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, et al. Modulation of murine breast tumor vascularity, hypoxia, and chemotherapeutic response by exercise. JNCI. 2015;107(5):djv040.PubMedCrossRefPubMedCentral
71.
go back to reference Jones LW, Antonelli J, Masko EM, Broadwater G, Lascola CD, Fels D, et al. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J Appl Physiol. 2012;113(2):263–72.PubMedPubMedCentralCrossRef Jones LW, Antonelli J, Masko EM, Broadwater G, Lascola CD, Fels D, et al. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J Appl Physiol. 2012;113(2):263–72.PubMedPubMedCentralCrossRef
72.
go back to reference Wolff G, Balke JE, Andras IE, Park M, Toborek M. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation. PLoS One. 2014;9(5):e97033.PubMedPubMedCentralCrossRef Wolff G, Balke JE, Andras IE, Park M, Toborek M. Exercise modulates redox-sensitive small GTPase activity in the brain microvasculature in a model of brain metastasis formation. PLoS One. 2014;9(5):e97033.PubMedPubMedCentralCrossRef
73.
go back to reference Jones LW, Fels DR, West M, Allen JD, Broadwater G, Barry WT, et al. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res. 2013;6(9):925–37.CrossRef Jones LW, Fels DR, West M, Allen JD, Broadwater G, Barry WT, et al. Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res. 2013;6(9):925–37.CrossRef
74.
go back to reference Glass OK, Inman BA, Broadwater G, Courneya KS, Mackey JR, Goruk S, et al. Effect of aerobic training on the host systemic milieu in patients with solid tumours: an exploratory correlative study. Br J Cancer. 2015;112(5):825.PubMedPubMedCentralCrossRef Glass OK, Inman BA, Broadwater G, Courneya KS, Mackey JR, Goruk S, et al. Effect of aerobic training on the host systemic milieu in patients with solid tumours: an exploratory correlative study. Br J Cancer. 2015;112(5):825.PubMedPubMedCentralCrossRef
75.
go back to reference Cook GJ, Azad GK, Goh V. Imaging bone metastases in breast cancer: staging and response assessment. J Nuclear Med. 2016;57(Supplement 1):27S–33S.CrossRef Cook GJ, Azad GK, Goh V. Imaging bone metastases in breast cancer: staging and response assessment. J Nuclear Med. 2016;57(Supplement 1):27S–33S.CrossRef
76.
go back to reference Costelloe CM, Rohren EM, Madewell JE, Hamaoka T, Theriault RL, Yu T-K, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10(6):606–14.PubMedCrossRef Costelloe CM, Rohren EM, Madewell JE, Hamaoka T, Theriault RL, Yu T-K, et al. Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol. 2009;10(6):606–14.PubMedCrossRef
77.
go back to reference Lecouvet F, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014;50(15):2519–31.PubMedCrossRef Lecouvet F, Talbot JN, Messiou C, Bourguet P, Liu Y, de Souza NM. Monitoring the response of bone metastases to treatment with magnetic resonance imaging and nuclear medicine techniques: a review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014;50(15):2519–31.PubMedCrossRef
79.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.PubMedCrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.PubMedCrossRef
80.
go back to reference Dunn LK, Mohammad KS, Fournier PGJ, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896.PubMedPubMedCentralCrossRef Dunn LK, Mohammad KS, Fournier PGJ, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-β drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896.PubMedPubMedCentralCrossRef
81.
go back to reference Guise TA, Chirgwin JM. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res®. 2003;415:S32–S8.CrossRef Guise TA, Chirgwin JM. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop Relat Res®. 2003;415:S32–S8.CrossRef
82.
go back to reference Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.PubMedCrossRef Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.PubMedCrossRef
83.
go back to reference Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2016;1863(3):382–91. Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2016;1863(3):382–91.
84.
go back to reference Drabsch Y, Ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3–4):553–68.PubMedCrossRef Drabsch Y, Ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3–4):553–68.PubMedCrossRef
85.
go back to reference Hart NH, Nimphius S, Spiteri T, Cochrane JL, Newton RU. Segmental musculoskeletal examinations using dual-energy x-ray absorptiometry (DXA): positioning and analysis considerations. J Sports Sci Med. 2015;14(3):620.PubMedPubMedCentral Hart NH, Nimphius S, Spiteri T, Cochrane JL, Newton RU. Segmental musculoskeletal examinations using dual-energy x-ray absorptiometry (DXA): positioning and analysis considerations. J Sports Sci Med. 2015;14(3):620.PubMedPubMedCentral
86.
go back to reference Anon. QDR for Windows XP Reference Manual. Bedford: Hologic Inc.; 2014. Anon. QDR for Windows XP Reference Manual. Bedford: Hologic Inc.; 2014.
87.
go back to reference Hart NH, Nimphius S, Weber J, Spiteri T, Rantalainen T, Dobbin M, et al. Musculoskeletal asymmetry in football athletes: a product of limb function over time. Med Sci Sports Exerc. 2016;48(7):1379–87.PubMedCrossRef Hart NH, Nimphius S, Weber J, Spiteri T, Rantalainen T, Dobbin M, et al. Musculoskeletal asymmetry in football athletes: a product of limb function over time. Med Sci Sports Exerc. 2016;48(7):1379–87.PubMedCrossRef
88.
go back to reference Rantalainen T, Chivers P, Beck BR, Robertson S, Hart NH, Nimphius S, et al. Please don't move—evaluating motion artifact from peripheral quantitative computed tomography scans using textural features. J Clin Densitom. 2018;21(2):260–8.PubMedCrossRef Rantalainen T, Chivers P, Beck BR, Robertson S, Hart NH, Nimphius S, et al. Please don't move—evaluating motion artifact from peripheral quantitative computed tomography scans using textural features. J Clin Densitom. 2018;21(2):260–8.PubMedCrossRef
89.
go back to reference McGill SM. Low back stability: from formal description to issues for performance and rehabilitation. Exerc Sport Sci Rev. 2001;29(1):26–31.PubMedCrossRef McGill SM. Low back stability: from formal description to issues for performance and rehabilitation. Exerc Sport Sci Rev. 2001;29(1):26–31.PubMedCrossRef
92.
go back to reference Thabane L, Mbuagbaw L, Zhang S, Samaan Z, Marcucci M, Ye C, et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med Res Methodol. 2013;13(1):92.PubMedPubMedCentralCrossRef Thabane L, Mbuagbaw L, Zhang S, Samaan Z, Marcucci M, Ye C, et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med Res Methodol. 2013;13(1):92.PubMedPubMedCentralCrossRef
93.
94.
go back to reference Beydoun N, Bucci JA, Chin YS, Spry N, Newton R, Galvão DA. Prospective study of exercise intervention in prostate cancer patients on androgen deprivation therapy. J Med Imaging Radiat Oncol. 2014;58(3):369–76.PubMedCrossRef Beydoun N, Bucci JA, Chin YS, Spry N, Newton R, Galvão DA. Prospective study of exercise intervention in prostate cancer patients on androgen deprivation therapy. J Med Imaging Radiat Oncol. 2014;58(3):369–76.PubMedCrossRef
95.
go back to reference Galvão DA, Newton RU, Taaffe DR, Spry N. Can exercise ameliorate the increased risk of cardiovascular disease and diabetes associated with ADT? Nat Rev Urol. 2008;5(6):306.CrossRef Galvão DA, Newton RU, Taaffe DR, Spry N. Can exercise ameliorate the increased risk of cardiovascular disease and diabetes associated with ADT? Nat Rev Urol. 2008;5(6):306.CrossRef
96.
go back to reference Jones LW, Alfano CM. Exercise-oncology research: past, present, and future. Acta Oncol. 2013;52(2):195–215.PubMedCrossRef Jones LW, Alfano CM. Exercise-oncology research: past, present, and future. Acta Oncol. 2013;52(2):195–215.PubMedCrossRef
97.
go back to reference Jones LW, Habel LA, Weltzien E, Castillo A, Gupta D, Kroenke CH, et al. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. J Clin Oncol. 2016;34(23):2743.PubMedPubMedCentralCrossRef Jones LW, Habel LA, Weltzien E, Castillo A, Gupta D, Kroenke CH, et al. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. J Clin Oncol. 2016;34(23):2743.PubMedPubMedCentralCrossRef
98.
go back to reference Kim TH, Chang JS, Kong ID. Effects of exercise training on physical fitness and biomarker levels in breast cancer survivors. J Lifestyle Med. 2017;7(2):55–62.PubMedPubMedCentralCrossRef Kim TH, Chang JS, Kong ID. Effects of exercise training on physical fitness and biomarker levels in breast cancer survivors. J Lifestyle Med. 2017;7(2):55–62.PubMedPubMedCentralCrossRef
99.
go back to reference Thomas GA, Cartmel B, Harrigan M, Fiellin M, Capozza S, Zhou Y, et al. The effect of exercise on body composition and bone mineral density in breast cancer survivors taking aromatase inhibitors. Obesity. 2017;25(2):346–51.PubMedCrossRef Thomas GA, Cartmel B, Harrigan M, Fiellin M, Capozza S, Zhou Y, et al. The effect of exercise on body composition and bone mineral density in breast cancer survivors taking aromatase inhibitors. Obesity. 2017;25(2):346–51.PubMedCrossRef
100.
go back to reference Kirkham AA, Davis MK. Exercise prevention of cardiovascular disease in breast cancer survivors. J Oncol. 2015;2015(917606):1–13.CrossRef Kirkham AA, Davis MK. Exercise prevention of cardiovascular disease in breast cancer survivors. J Oncol. 2015;2015(917606):1–13.CrossRef
101.
go back to reference Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124(5):642–50.PubMedPubMedCentralCrossRef Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation. 2011;124(5):642–50.PubMedPubMedCentralCrossRef
102.
go back to reference Ahmed RL, Thomas W, Yee D, Schmitz KH. Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol. 2006;24(18):2765–72.PubMedCrossRef Ahmed RL, Thomas W, Yee D, Schmitz KH. Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol. 2006;24(18):2765–72.PubMedCrossRef
103.
go back to reference Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, et al. Weight lifting for women at risk for breast cancer–related lymphedema: a randomized trial. JAMA. 2010;304(24):2699–705.PubMedCrossRef Schmitz KH, Ahmed RL, Troxel AB, Cheville A, Lewis-Grant L, Smith R, et al. Weight lifting for women at risk for breast cancer–related lymphedema: a randomized trial. JAMA. 2010;304(24):2699–705.PubMedCrossRef
104.
go back to reference Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 2016;76(14):4032–50.PubMedPubMedCentralCrossRef Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 2016;76(14):4032–50.PubMedPubMedCentralCrossRef
105.
go back to reference Betof AS, Dewhirst MW, Jones LW. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun. 2013;30(Suppl):S75–87.PubMedCrossRef Betof AS, Dewhirst MW, Jones LW. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun. 2013;30(Suppl):S75–87.PubMedCrossRef
106.
go back to reference Dethlefsen C, Pedersen KS, Hojman P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res Treat. 2017;162(3):399–408.PubMedCrossRef Dethlefsen C, Pedersen KS, Hojman P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res Treat. 2017;162(3):399–408.PubMedCrossRef
107.
go back to reference Ergun M, Eyigor S, Karaca B, Kisim A, Uslu R. Effects of exercise on angiogenesis and apoptosis-related molecules, quality of life, fatigue and depression in breast cancer patients. Eur J Cancer Care. 2013;22(5):626–37.CrossRef Ergun M, Eyigor S, Karaca B, Kisim A, Uslu R. Effects of exercise on angiogenesis and apoptosis-related molecules, quality of life, fatigue and depression in breast cancer patients. Eur J Cancer Care. 2013;22(5):626–37.CrossRef
108.
go back to reference Galvão DA, Nosaka K, Taaffe D, Peake J, Spry N, Suzuki K, et al. Endocrine and immune responses to resistance training in prostate cancer patients. Prostate Cancer Prostatic Dis. 2008;11(2):160.PubMedCrossRef Galvão DA, Nosaka K, Taaffe D, Peake J, Spry N, Suzuki K, et al. Endocrine and immune responses to resistance training in prostate cancer patients. Prostate Cancer Prostatic Dis. 2008;11(2):160.PubMedCrossRef
109.
go back to reference Hayes BD, Brady L, Pollak M, Finn SP. Exercise and prostate cancer: evidence and proposed mechanisms for disease modification. Cancer Epidemiol Prev Biomark. 2016;25(9):1281–8.CrossRef Hayes BD, Brady L, Pollak M, Finn SP. Exercise and prostate cancer: evidence and proposed mechanisms for disease modification. Cancer Epidemiol Prev Biomark. 2016;25(9):1281–8.CrossRef
110.
go back to reference Hoffman P, editor. Exercise training, tumour metabolism, tumour-host interaction and lactate shuttle theory. 4th Annual Meeting of the International Society of Proton Dynamics in Cancer. Garching: Frontiers in Pharmacology; 2013. Hoffman P, editor. Exercise training, tumour metabolism, tumour-host interaction and lactate shuttle theory. 4th Annual Meeting of the International Society of Proton Dynamics in Cancer. Garching: Frontiers in Pharmacology; 2013.
111.
go back to reference Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22(7):565–77.PubMedCrossRef Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med. 2016;22(7):565–77.PubMedCrossRef
112.
113.
go back to reference Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017;17(10):620–32.PubMedCrossRef Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer. 2017;17(10):620–32.PubMedCrossRef
114.
go back to reference Koelwyn GJ, Wennerberg E, Demaria S, Jones LW. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncology (Williston Park). 2015;29(12):908–20. Koelwyn GJ, Wennerberg E, Demaria S, Jones LW. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncology (Williston Park). 2015;29(12):908–20.
115.
go back to reference Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology and metabolism. Cancer J. 2015;21(2):111–6.PubMedCrossRef Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology and metabolism. Cancer J. 2015;21(2):111–6.PubMedCrossRef
116.
go back to reference Pudkasam S, Tangalakis K, Chinlumprasert N, Apostolopoulos V, Stojanovska L. Breast cancer and exercise: the role of adiposity and immune markers. Maturitas. 2017;105:16–22.PubMedCrossRef Pudkasam S, Tangalakis K, Chinlumprasert N, Apostolopoulos V, Stojanovska L. Breast cancer and exercise: the role of adiposity and immune markers. Maturitas. 2017;105:16–22.PubMedCrossRef
117.
go back to reference Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7(40):65429–40.PubMedPubMedCentralCrossRef Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7(40):65429–40.PubMedPubMedCentralCrossRef
118.
go back to reference Thomas RJ, Kenfield SA, Jimenez A. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br J Sports Med. 2016;51(8):640–4.PubMedCrossRef Thomas RJ, Kenfield SA, Jimenez A. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br J Sports Med. 2016;51(8):640–4.PubMedCrossRef
119.
go back to reference Ammitzbøll G, Søgaard K, Karlsen RV, Tjønneland A, Johansen C, Frederiksen K, et al. Physical activity and survival in breast cancer. Eur J Cancer. 2016;66:67–74.PubMedCrossRef Ammitzbøll G, Søgaard K, Karlsen RV, Tjønneland A, Johansen C, Frederiksen K, et al. Physical activity and survival in breast cancer. Eur J Cancer. 2016;66:67–74.PubMedCrossRef
120.
go back to reference Bonn SE, Sjölander A, Lagerros YT, Wiklund F, Stattin P, Holmberg E, et al. Physical activity and survival among men diagnosed with prostate cancer. Cancer Epidemiol Prev Biomark. 2015;24(1):57–64.CrossRef Bonn SE, Sjölander A, Lagerros YT, Wiklund F, Stattin P, Holmberg E, et al. Physical activity and survival among men diagnosed with prostate cancer. Cancer Epidemiol Prev Biomark. 2015;24(1):57–64.CrossRef
121.
go back to reference Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013;31(7):876–85.PubMedCrossRef Campbell PT, Patel AV, Newton CC, Jacobs EJ, Gapstur SM. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013;31(7):876–85.PubMedCrossRef
122.
go back to reference Chen X, Lu W, Zheng W, Gu K, Matthews CE, Chen Z, et al. Exercise after diagnosis of breast cancer in association with survival. Cancer Prev Res. 2011;4(9):1409–18.CrossRef Chen X, Lu W, Zheng W, Gu K, Matthews CE, Chen Z, et al. Exercise after diagnosis of breast cancer in association with survival. Cancer Prev Res. 2011;4(9):1409–18.CrossRef
123.
go back to reference Friedenreich CM, Wang Q, Neilson HK, Kopciuk KA, McGregor SE, Courneya KS. Physical activity and survival after prostate cancer. Eur Urol. 2016;70(4):576–85.PubMedCrossRef Friedenreich CM, Wang Q, Neilson HK, Kopciuk KA, McGregor SE, Courneya KS. Physical activity and survival after prostate cancer. Eur Urol. 2016;70(4):576–85.PubMedCrossRef
124.
go back to reference Gunnell AS, Joyce S, Tomlin S, Taaffe DR, Cormie P, Newton RU, et al. Physical activity and survival among long-term cancer survivor and non-cancer cohorts. Front Public Health. 2017;5:19.PubMedPubMedCentralCrossRef Gunnell AS, Joyce S, Tomlin S, Taaffe DR, Cormie P, Newton RU, et al. Physical activity and survival among long-term cancer survivor and non-cancer cohorts. Front Public Health. 2017;5:19.PubMedPubMedCentralCrossRef
125.
go back to reference Haydon AM, MacInnis RJ, English DR, Giles GG. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut. 2006;55(1):62–7.PubMedPubMedCentralCrossRef Haydon AM, MacInnis RJ, English DR, Giles GG. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut. 2006;55(1):62–7.PubMedPubMedCentralCrossRef
126.
go back to reference Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ, et al. Physical activity and survival after diagnosis of invasive breast Cancer. Cancer Epidemiol Prev Biomark. 2008;17(2):379–86.CrossRef Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ, et al. Physical activity and survival after diagnosis of invasive breast Cancer. Cancer Epidemiol Prev Biomark. 2008;17(2):379–86.CrossRef
127.
go back to reference Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.PubMedCrossRef Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.PubMedCrossRef
128.
go back to reference Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65.PubMedCrossRef Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65.PubMedCrossRef
129.
go back to reference Kenfield SA, Stampfer MJ, Giovannucci E, Chan JM. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726–32.PubMedPubMedCentralCrossRef Kenfield SA, Stampfer MJ, Giovannucci E, Chan JM. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726–32.PubMedPubMedCentralCrossRef
130.
go back to reference Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol. 2006;24(22):3527–34.PubMedCrossRef Meyerhardt JA, Giovannucci EL, Holmes MD, Chan AT, Chan JA, Colditz GA, et al. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol. 2006;24(22):3527–34.PubMedCrossRef
131.
go back to reference Meyerhardt JA, Giovannucci EL, Ogino S, Kirkner GJ, Chan AT, Willett W, et al. Physical activity and male colorectal cancer survival. Arch Intern Med. 2009;169(22):2102–8.PubMedPubMedCentralCrossRef Meyerhardt JA, Giovannucci EL, Ogino S, Kirkner GJ, Chan AT, Willett W, et al. Physical activity and male colorectal cancer survival. Arch Intern Med. 2009;169(22):2102–8.PubMedPubMedCentralCrossRef
132.
go back to reference Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA. Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol. 2017;35(6):867–74.PubMedCrossRef Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA. Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol. 2017;35(6):867–74.PubMedCrossRef
133.
go back to reference Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research Endeavor. Cancer Res. 2011;71(11):3889–95.PubMedPubMedCentralCrossRef Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research Endeavor. Cancer Res. 2011;71(11):3889–95.PubMedPubMedCentralCrossRef
134.
go back to reference Van Blarigan EL, Gerstenberger JP, Kenfield SA, Giovannucci EL, Stampfer MJ, Jones LW, et al. Physical activity and prostate tumor vessel morphology: data from the Health Professionals Follow-up Study. Cancer Prev Res. 2015;8(10):962–7.CrossRef Van Blarigan EL, Gerstenberger JP, Kenfield SA, Giovannucci EL, Stampfer MJ, Jones LW, et al. Physical activity and prostate tumor vessel morphology: data from the Health Professionals Follow-up Study. Cancer Prev Res. 2015;8(10):962–7.CrossRef
136.
go back to reference Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26(4):465–84.PubMedPubMedCentralCrossRef Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol. 2013;26(4):465–84.PubMedPubMedCentralCrossRef
137.
go back to reference Bruno E, Roveda E, Vitale J, Montaruli A, Berrino F, Villarini A, et al. Effect of aerobic exercise intervention on markers of insulin resistance in breast cancer women. Eur J Cancer Care. 2018;27(2):e12617.CrossRef Bruno E, Roveda E, Vitale J, Montaruli A, Berrino F, Villarini A, et al. Effect of aerobic exercise intervention on markers of insulin resistance in breast cancer women. Eur J Cancer Care. 2018;27(2):e12617.CrossRef
138.
go back to reference Demark-Wahnefried W, Campbell KL, Hayes SC. Weight management and its role in breast cancer rehabilitation. Cancer. 2012;118(8):2277–87.PubMedCrossRef Demark-Wahnefried W, Campbell KL, Hayes SC. Weight management and its role in breast cancer rehabilitation. Cancer. 2012;118(8):2277–87.PubMedCrossRef
139.
go back to reference Egan K, Cooke N, Kenny D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis. 2014;31(6):697–704.PubMedCrossRef Egan K, Cooke N, Kenny D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis. 2014;31(6):697–704.PubMedCrossRef
140.
go back to reference Garland SN, Johnson B, Palmer C, Speck RM, Donelson M, Xie SX, et al. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 2014;16(4):413.PubMedPubMedCentralCrossRef Garland SN, Johnson B, Palmer C, Speck RM, Donelson M, Xie SX, et al. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 2014;16(4):413.PubMedPubMedCentralCrossRef
142.
go back to reference Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRef Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRef
144.
go back to reference Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.PubMedCrossRef Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–15.PubMedCrossRef
145.
Metadata
Title
Mechanical suppression of osteolytic bone metastases in advanced breast cancer patients: a randomised controlled study protocol evaluating safety, feasibility and preliminary efficacy of exercise as a targeted medicine
Authors
Nicolas H. Hart
Daniel A. Galvão
Christobel Saunders
Dennis R. Taaffe
Kynan T. Feeney
Nigel A. Spry
Daphne Tsoi
Hilary Martin
Raphael Chee
Tim Clay
Andrew D. Redfern
Robert U. Newton
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Trials / Issue 1/2018
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-018-3091-8

Other articles of this Issue 1/2018

Trials 1/2018 Go to the issue