Skip to main content
Top
Published in: Molecular Pain 1/2013

Open Access 01-12-2013 | Short report

Mechanical sensitization of cutaneous sensory fibers in the spared nerve injury mouse model

Authors: Amanda K Smith, Crystal L O’Hara, Cheryl L Stucky

Published in: Molecular Pain | Issue 1/2013

Login to get access

Abstract

Background

The spared nerve injury (SNI) model of neuropathic pain produces robust and reproducible behavioral mechanical hypersensitivity. Although this rodent model of neuropathic pain has been well established and widely used, peripheral mechanisms underlying this phenotype remain incompletely understood. Here we investigated the role of cutaneous sensory fibers in the maintenance of mechanical hyperalgesia in mice post-SNI.

Findings

SNI produced robust, long-lasting behavioral mechanical hypersensitivity compared to sham and naïve controls beginning by post-operative day (POD) 1 and continuing through at least POD 180. We performed teased fiber recordings on single cutaneous fibers from the spared sural nerve using ex vivo skin-nerve preparations. Recordings were made between POD 16–42 after SNI or sham surgery. Aδ-mechanoreceptors (AM) and C fibers, many of which are nociceptors, from SNI mice fired significantly more action potentials in response to suprathreshold mechanical stimulation than did fibers from either sham or naïve control mice. However, there was no increase in spontaneous activity.

Conclusions

To our knowledge, this is the first study evaluating the contribution of primary afferent fibers in the SNI model. These data suggest that enhanced suprathreshold firing in AM and C fibers may play a role in the marked, persistent mechanical hypersensitivity observed in this model. These results may provide insight into mechanisms underlying neuropathic pain in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87: 149–158. 10.1016/S0304-3959(00)00276-1CrossRefPubMed Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87: 149–158. 10.1016/S0304-3959(00)00276-1CrossRefPubMed
2.
go back to reference Magrinelli F, Zanette G, Tamburin S: Neuropathic pain: diagnosis and treatment. Pract Neurol 2013, 13: 262–307.CrossRef Magrinelli F, Zanette G, Tamburin S: Neuropathic pain: diagnosis and treatment. Pract Neurol 2013, 13: 262–307.CrossRef
3.
go back to reference Bourquin AF, Suveges M, Pertin M, Gilliard N, Sardy S, Davison AC, et al.: Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 2006, 122: 14.CrossRefPubMed Bourquin AF, Suveges M, Pertin M, Gilliard N, Sardy S, Davison AC, et al.: Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 2006, 122: 14.CrossRefPubMed
4.
go back to reference Abe K, Fujii Y, Nojima H: Evaluation of hyperalgesia in spared nerve injury model using mechanical, thermal, and chemical stimuli in the mouse. Neurol Res 2011, 33: 656–662. 10.1179/1743132810Y.0000000019CrossRefPubMed Abe K, Fujii Y, Nojima H: Evaluation of hyperalgesia in spared nerve injury model using mechanical, thermal, and chemical stimuli in the mouse. Neurol Res 2011, 33: 656–662. 10.1179/1743132810Y.0000000019CrossRefPubMed
5.
go back to reference Bennett GJ, Xie YK: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33: 87–107. 10.1016/0304-3959(88)90209-6CrossRefPubMed Bennett GJ, Xie YK: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33: 87–107. 10.1016/0304-3959(88)90209-6CrossRefPubMed
6.
go back to reference Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43: 205–218. 10.1016/0304-3959(90)91074-SCrossRefPubMed Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43: 205–218. 10.1016/0304-3959(90)91074-SCrossRefPubMed
7.
go back to reference Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363. 10.1016/0304-3959(92)90041-9CrossRefPubMed Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363. 10.1016/0304-3959(92)90041-9CrossRefPubMed
8.
go back to reference Koltzenburg M, Scadding J: Neuropathic pain. Curr Opin Neurol 2001, 14: 641–647. 10.1097/00019052-200110000-00014CrossRefPubMed Koltzenburg M, Scadding J: Neuropathic pain. Curr Opin Neurol 2001, 14: 641–647. 10.1097/00019052-200110000-00014CrossRefPubMed
9.
go back to reference Shields SD, Eckert WA III, Basbaum AI: Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 2003, 4: 465–470. 10.1067/S1526-5900(03)00781-8CrossRefPubMed Shields SD, Eckert WA III, Basbaum AI: Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 2003, 4: 465–470. 10.1067/S1526-5900(03)00781-8CrossRefPubMed
10.
go back to reference Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, et al.: Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 1999, 81: 455–466.PubMed Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, et al.: Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 1999, 81: 455–466.PubMed
11.
go back to reference Shim B, Kim DW, Kim BH, Nam TS, Leem JW, Chung JM: Mechanical and heat sensitization of cutaneous nociceptors in rats with experimental peripheral neuropathy. Neuroscience 2005, 132: 193–201. 10.1016/j.neuroscience.2004.12.036CrossRefPubMed Shim B, Kim DW, Kim BH, Nam TS, Leem JW, Chung JM: Mechanical and heat sensitization of cutaneous nociceptors in rats with experimental peripheral neuropathy. Neuroscience 2005, 132: 193–201. 10.1016/j.neuroscience.2004.12.036CrossRefPubMed
12.
go back to reference Koltzenburg M, Kees S, Budweiser S, Ochs G, Toyka KV: The Properties of Unmyelinated Nociceptive Afferents Change in a Painful Chronic Constriction Neuropathy. In Proceedings of the 7th World Congress on Pain, Progress in Pain Research and Management, Vol. 2. Edited by: Gebhart GF, Hammond DL, Jensen TS. Seattle: IASP Press; 1994:511–522. Koltzenburg M, Kees S, Budweiser S, Ochs G, Toyka KV: The Properties of Unmyelinated Nociceptive Afferents Change in a Painful Chronic Constriction Neuropathy. In Proceedings of the 7th World Congress on Pain, Progress in Pain Research and Management, Vol. 2. Edited by: Gebhart GF, Hammond DL, Jensen TS. Seattle: IASP Press; 1994:511–522.
13.
go back to reference Tal M, Eliav E: Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 1996, 64: 511–518. 10.1016/0304-3959(95)00175-1CrossRefPubMed Tal M, Eliav E: Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat. Pain 1996, 64: 511–518. 10.1016/0304-3959(95)00175-1CrossRefPubMed
14.
go back to reference Garrison SR, Dietrich A, Stucky CL: TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2012, 107: 913–922. 10.1152/jn.00658.2011PubMedCentralCrossRefPubMed Garrison SR, Dietrich A, Stucky CL: TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2012, 107: 913–922. 10.1152/jn.00658.2011PubMedCentralCrossRefPubMed
15.
go back to reference Lennertz RC, Medler KA, Bain JL, Wright DE, Stucky CL: Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. J Neurophysiol 2011, 106: 905–914. 10.1152/jn.01123.2010PubMedCentralCrossRefPubMed Lennertz RC, Medler KA, Bain JL, Wright DE, Stucky CL: Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. J Neurophysiol 2011, 106: 905–914. 10.1152/jn.01123.2010PubMedCentralCrossRefPubMed
16.
go back to reference Xiao WH, Bennett GJ: Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain 2008, 135: 262–270. 10.1016/j.pain.2007.06.001PubMedCentralCrossRefPubMed Xiao WH, Bennett GJ: Chemotherapy-evoked neuropathic pain: Abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain 2008, 135: 262–270. 10.1016/j.pain.2007.06.001PubMedCentralCrossRefPubMed
17.
go back to reference Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M: Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 2000, 85: 503–521. 10.1016/S0304-3959(00)00251-7CrossRefPubMed Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M: Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 2000, 85: 503–521. 10.1016/S0304-3959(00)00251-7CrossRefPubMed
18.
go back to reference Sun Q, Tu H, Xing GG, Han JS, Wan Y: Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 2005, 191: 128–136. 10.1016/j.expneurol.2004.09.008CrossRefPubMed Sun Q, Tu H, Xing GG, Han JS, Wan Y: Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 2005, 191: 128–136. 10.1016/j.expneurol.2004.09.008CrossRefPubMed
19.
go back to reference Gold MS: Spinal nerve ligation: what to blame for the pain and why. Pain 2000, 84: 117–120. 10.1016/S0304-3959(99)00309-7CrossRefPubMed Gold MS: Spinal nerve ligation: what to blame for the pain and why. Pain 2000, 84: 117–120. 10.1016/S0304-3959(99)00309-7CrossRefPubMed
20.
go back to reference Kwon MJ, Kim J, Shin H, Jeong SR, Kang YM, Choi JY, et al.: Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci 2013, 33: 15095–15108. 10.1523/JNEUROSCI.0278-13.2013CrossRefPubMed Kwon MJ, Kim J, Shin H, Jeong SR, Kang YM, Choi JY, et al.: Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci 2013, 33: 15095–15108. 10.1523/JNEUROSCI.0278-13.2013CrossRefPubMed
21.
go back to reference Kingery WS, Vallin JA: The development of chronic mechanical hyperalgesia, autotomy and collateral sprouting following sciatic nerve section in rat. Pain 1989, 38: 321–332. 10.1016/0304-3959(89)90219-4CrossRefPubMed Kingery WS, Vallin JA: The development of chronic mechanical hyperalgesia, autotomy and collateral sprouting following sciatic nerve section in rat. Pain 1989, 38: 321–332. 10.1016/0304-3959(89)90219-4CrossRefPubMed
22.
go back to reference Devor M, Schonfeld D, Seltzer Z, Wall PD: Two modes of cutaneous reinnervation following peripheral nerve injury. J Comp Neurol 1979, 185: 211–220. 10.1002/cne.901850113CrossRefPubMed Devor M, Schonfeld D, Seltzer Z, Wall PD: Two modes of cutaneous reinnervation following peripheral nerve injury. J Comp Neurol 1979, 185: 211–220. 10.1002/cne.901850113CrossRefPubMed
23.
go back to reference Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, et al.: Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 2001, 21: RC140.PubMed Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, et al.: Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci 2001, 21: RC140.PubMed
24.
go back to reference Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003, 23: 3028–3038.PubMed Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003, 23: 3028–3038.PubMed
25.
go back to reference Lennertz RC, Kossyreva EA, Smith AK, Stucky CL: TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One 2012, 7: e43597. 10.1371/journal.pone.0043597PubMedCentralCrossRefPubMed Lennertz RC, Kossyreva EA, Smith AK, Stucky CL: TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One 2012, 7: e43597. 10.1371/journal.pone.0043597PubMedCentralCrossRefPubMed
Metadata
Title
Mechanical sensitization of cutaneous sensory fibers in the spared nerve injury mouse model
Authors
Amanda K Smith
Crystal L O’Hara
Cheryl L Stucky
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2013
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-9-61

Other articles of this Issue 1/2013

Molecular Pain 1/2013 Go to the issue