Skip to main content
Top
Published in: Pediatric Nephrology 3/2017

01-03-2017 | Review

Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis

Authors: Wilhelm Kriz, Kevin V. Lemley

Published in: Pediatric Nephrology | Issue 3/2017

Login to get access

Abstract

Podocytes are lost as viable cells by detachment from the glomerular basement membrane (GBM), possibly due to factors such as pressure and filtrate flow. Distension of glomerular capillaries in response to increased pressure is limited by the elastic resistance of the GBM. The endothelium and podocytes adapt to changes in GBM area. The slit diaphragm (SD) seems to adjust by shuttling SD components between the SD and the adjacent foot processes (FPs), resulting in changes in SD area that parallel those in perfusion pressure.
Filtrate flow tends to drag podocytes towards the urinary orifice by shear forces, which are highest within the filtration slits. The SD represents an atypical adherens junction, mechanically interconnecting the cytoskeleton of opposing FPs and tending to balance the shear forces.
If under pathological conditions, increased filtrate flows locally overtax the attachment of FPs, the SDs are replaced by occluding junctions that seal the slits and the attachment of podocytes to the GBM is reinforced by FP effacement. Failure of these temporary adaptive mechanisms results in a steady process of podocyte detachment due to uncontrolled filtrate flows through bare areas of the GBM and, subsequently, the labyrinthine subpodocyte spaces, presenting as pseudocysts. In our view, shear stress due to filtrate flow—not capillary hydrostatic pressure—is the major challenge to the attachment of podocytes to the GBM.
Literature
2.
go back to reference van Dokkum RP, Alonso-Galicia MA, Provoost AP, Jacob HJ, Roman RJ (1999) Impaired autoregulation of renal blood flow in the fawn-hooded rat. Am J Physiol 276:R189–R196PubMed van Dokkum RP, Alonso-Galicia MA, Provoost AP, Jacob HJ, Roman RJ (1999) Impaired autoregulation of renal blood flow in the fawn-hooded rat. Am J Physiol 276:R189–R196PubMed
3.
go back to reference Nagata M, Schaerer K, Kriz W (1992) Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture. Kidney Int 42:136–147CrossRefPubMed Nagata M, Schaerer K, Kriz W (1992) Glomerular damage after uninephrectomy in young rats. I. Hypertrophy and distortion of capillary architecture. Kidney Int 42:136–147CrossRefPubMed
4.
go back to reference Salmon AH, Neal CR, Harper SJ (2009) New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens 18:197–205PubMed Salmon AH, Neal CR, Harper SJ (2009) New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens 18:197–205PubMed
5.
go back to reference Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, Harper SJ, Salmon AH, Squire JM, Bates DO, Neal CR (2014) Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol 15:24CrossRefPubMedPubMedCentral Arkill KP, Qvortrup K, Starborg T, Mantell JM, Knupp C, Michel CC, Harper SJ, Salmon AH, Squire JM, Bates DO, Neal CR (2014) Resolution of the three dimensional structure of components of the glomerular filtration barrier. BMC Nephrol 15:24CrossRefPubMedPubMedCentral
6.
go back to reference Kihara I, Tsuchida S, Yaoita E, Yamamoto T, Hara M, Yanagihara T, Takeda K (1997) Podocyte detachment and epithelial cell reaction in focal segmental glomerulosclerosis with cellular variants. Kidney Int 52:S171–S176CrossRef Kihara I, Tsuchida S, Yaoita E, Yamamoto T, Hara M, Yanagihara T, Takeda K (1997) Podocyte detachment and epithelial cell reaction in focal segmental glomerulosclerosis with cellular variants. Kidney Int 52:S171–S176CrossRef
7.
go back to reference Kriz W, Shirato I, Nagata M, Le Hir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Ren Physiol 304:F333–F347CrossRef Kriz W, Shirato I, Nagata M, Le Hir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Ren Physiol 304:F333–F347CrossRef
8.
go back to reference Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Ren Physiol 285:F40–F48CrossRef Vogelmann SU, Nelson WJ, Myers BD, Lemley KV (2003) Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Ren Physiol 285:F40–F48CrossRef
9.
go back to reference Craici IM, Wagner SJ, Bailey KR, Fitz-Gibbon PD, Wood-Wentz CM, Turner ST, Haymann SR, White WM, Brost BC, Rose CH, Grande JP, Garovic VD (2013) Podocyturia predates proteinuria and clinical features of preeclampsia. Longitudinal prospecive study. Hypertension 61:1289–1296CrossRefPubMedPubMedCentral Craici IM, Wagner SJ, Bailey KR, Fitz-Gibbon PD, Wood-Wentz CM, Turner ST, Haymann SR, White WM, Brost BC, Rose CH, Grande JP, Garovic VD (2013) Podocyturia predates proteinuria and clinical features of preeclampsia. Longitudinal prospecive study. Hypertension 61:1289–1296CrossRefPubMedPubMedCentral
10.
go back to reference Fukuda A, Wickman LT, Venkatareddy MP, Sato Y, Chowdhury MA, Wang SQ, Shedden KA, Dysko RC, Wiggins JE, Wiggins RC (2012) Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 81:40–55CrossRefPubMed Fukuda A, Wickman LT, Venkatareddy MP, Sato Y, Chowdhury MA, Wang SQ, Shedden KA, Dysko RC, Wiggins JE, Wiggins RC (2012) Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int 81:40–55CrossRefPubMed
11.
go back to reference Wickman L, Afshinnia F, Wang SQ, Yang Y, Wang F, Chowdhury M, Graham D, Hawkins J, Nishizono R, Tanzer M, Wiggins J, Escobar GA, Rovin B, Song P, Gipson D, Kershaw D, Wiggins RC (2013) Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J Am Soc Nephrol 24:2081–2095CrossRefPubMedPubMedCentral Wickman L, Afshinnia F, Wang SQ, Yang Y, Wang F, Chowdhury M, Graham D, Hawkins J, Nishizono R, Tanzer M, Wiggins J, Escobar GA, Rovin B, Song P, Gipson D, Kershaw D, Wiggins RC (2013) Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J Am Soc Nephrol 24:2081–2095CrossRefPubMedPubMedCentral
12.
go back to reference Lazzeri E, Romagnani P (2014) Podocyte biology: differentiation of parietal epithelial cells into podocytes. Nat Rev Nephrol 11:7–8CrossRefPubMed Lazzeri E, Romagnani P (2014) Podocyte biology: differentiation of parietal epithelial cells into podocytes. Nat Rev Nephrol 11:7–8CrossRefPubMed
13.
go back to reference Pippin JW, Glenn ST, Krofft RD, Rusiniak ME, Alpers CE, Hudkins KL, Duffield JS, Gross KW, Shankland SJ (2014) Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am J Physiol Ren Physiol 306:F1198–F1209CrossRef Pippin JW, Glenn ST, Krofft RD, Rusiniak ME, Alpers CE, Hudkins KL, Duffield JS, Gross KW, Shankland SJ (2014) Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am J Physiol Ren Physiol 306:F1198–F1209CrossRef
14.
go back to reference Berger K, Schulte K, Boor P, Kuppe C, van Kuppevelt TH, Floege J, Smeets B, Moeller MJ (2014) The regenerative potential of parietal epithelial cells in adult mice. J Am Soc Nephrol 25:693–705CrossRefPubMedPubMedCentral Berger K, Schulte K, Boor P, Kuppe C, van Kuppevelt TH, Floege J, Smeets B, Moeller MJ (2014) The regenerative potential of parietal epithelial cells in adult mice. J Am Soc Nephrol 25:693–705CrossRefPubMedPubMedCentral
15.
go back to reference Kriz W, Le Hir M (2005) Pathways to nephron loss starting from glomerular diseases—Insights from animal models. Kidney Int 67:404–419CrossRefPubMed Kriz W, Le Hir M (2005) Pathways to nephron loss starting from glomerular diseases—Insights from animal models. Kidney Int 67:404–419CrossRefPubMed
16.
go back to reference Kriz W, Elger M, Mundel P, Lemley KV (1995) Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol 5:1731–1739PubMed Kriz W, Elger M, Mundel P, Lemley KV (1995) Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol 5:1731–1739PubMed
17.
go back to reference Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hähnel B (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376CrossRefPubMed Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hähnel B (1994) A role for podocytes to counteract capillary wall distension. Kidney Int 45:369–376CrossRefPubMed
18.
go back to reference Shirato I, Sakai T, Kimura K, Tomino Y, Kriz W (1996) Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol 148:1283–1296PubMedPubMedCentral Shirato I, Sakai T, Kimura K, Tomino Y, Kriz W (1996) Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am J Pathol 148:1283–1296PubMedPubMedCentral
19.
go back to reference Endlich N, Sunohara M, Nietfield W, Wolski EW, Schiwek D, Kränzlin B, Gretz N, Kriz W, Eickhoff H, Endlich KH (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16:1850–1852PubMed Endlich N, Sunohara M, Nietfield W, Wolski EW, Schiwek D, Kränzlin B, Gretz N, Kriz W, Eickhoff H, Endlich KH (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16:1850–1852PubMed
20.
go back to reference Endlich N, Endlich KH (2012) The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32:327–341CrossRefPubMed Endlich N, Endlich KH (2012) The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32:327–341CrossRefPubMed
21.
go back to reference Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich KH (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12:413–422PubMed Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich KH (2001) Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12:413–422PubMed
22.
go back to reference Harris RC, Haralson MA, Badr KF (1992) Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Investig 66:548–554PubMed Harris RC, Haralson MA, Badr KF (1992) Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Investig 66:548–554PubMed
23.
go back to reference Johnstone DB, Zhang J, George B, Léon C, Gachet C, Wong H, Parekh R, Holzman LB (2011) Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol 31:2162–2170CrossRefPubMedPubMedCentral Johnstone DB, Zhang J, George B, Léon C, Gachet C, Wong H, Parekh R, Holzman LB (2011) Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol 31:2162–2170CrossRefPubMedPubMedCentral
24.
go back to reference Ishida M, Mori Y, Ota N, Inaba T, Kunishima S (2013) Association of a novel in-frame deletion mutation of the MYH9 gene with end-stage renal failure: case report and review of the literature. Clin Nephrol 80:218–222CrossRefPubMed Ishida M, Mori Y, Ota N, Inaba T, Kunishima S (2013) Association of a novel in-frame deletion mutation of the MYH9 gene with end-stage renal failure: case report and review of the literature. Clin Nephrol 80:218–222CrossRefPubMed
25.
go back to reference Zhang Y, Conti MA, Malide D, Dong F, Wang A, Shmist YA, Liu C, Zerfas P, Daniels MP, Chan CC, Kozin E, Kachar B, Kelley MJ, Kopp JB, Adelstein RS (2012) Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood 119:238–250CrossRefPubMedPubMedCentral Zhang Y, Conti MA, Malide D, Dong F, Wang A, Shmist YA, Liu C, Zerfas P, Daniels MP, Chan CC, Kozin E, Kachar B, Kelley MJ, Kopp JB, Adelstein RS (2012) Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood 119:238–250CrossRefPubMedPubMedCentral
26.
go back to reference Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18CrossRefPubMed Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18CrossRefPubMed
27.
go back to reference Drumond MC, Deen WM (1994) Structural determinants of glomerular hydraulic permeability. Am J Physiol 266:F1–F12PubMed Drumond MC, Deen WM (1994) Structural determinants of glomerular hydraulic permeability. Am J Physiol 266:F1–F12PubMed
28.
go back to reference Sakai T, Lemley KV, Hackenthal E, Nagata M, Nobiling R, Kriz W (1992) Changes in glomerular structure following acute mesangial failure in the isolated perfused kidney. Kidney Int 41:533–541CrossRefPubMed Sakai T, Lemley KV, Hackenthal E, Nagata M, Nobiling R, Kriz W (1992) Changes in glomerular structure following acute mesangial failure in the isolated perfused kidney. Kidney Int 41:533–541CrossRefPubMed
29.
go back to reference Ichimura K, Miyazaki N, Sadayama S, Murata K, Koike M, Nakamura K, Ohta K, Sakai T (2015) Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy. Sci Rep 5:8993CrossRefPubMedPubMedCentral Ichimura K, Miyazaki N, Sadayama S, Murata K, Koike M, Nakamura K, Ohta K, Sakai T (2015) Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy. Sci Rep 5:8993CrossRefPubMedPubMedCentral
30.
go back to reference Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1PubMed Reiser J, Kriz W, Kretzler M, Mundel P (2000) The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol 11:1PubMed
31.
go back to reference Quack I, Rump LC, Gerke P, Walther I, Vinke T, Vonend O, Grunwald T, Sellin L (2006) beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci USA 103:14110–14115CrossRefPubMedPubMedCentral Quack I, Rump LC, Gerke P, Walther I, Vinke T, Vonend O, Grunwald T, Sellin L (2006) beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci USA 103:14110–14115CrossRefPubMedPubMedCentral
32.
go back to reference Arif E, Wagner MC, Johnstone DB, Wong NH, George B, Pruthi PA, Lazzara MJ, Nihalini D (2011) Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol 31:2134–2150CrossRefPubMedPubMedCentral Arif E, Wagner MC, Johnstone DB, Wong NH, George B, Pruthi PA, Lazzara MJ, Nihalini D (2011) Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol 31:2134–2150CrossRefPubMedPubMedCentral
33.
go back to reference Robinson GB, Walton HA (1989) Glomerular basement membrane as a compressible ultrafilter. Microvasc Res 38:36–48CrossRefPubMed Robinson GB, Walton HA (1989) Glomerular basement membrane as a compressible ultrafilter. Microvasc Res 38:36–48CrossRefPubMed
34.
35.
go back to reference Friedrich C, Endlich N, Kriz W, Endlich KH (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Ren Physiol 291:F856–F865CrossRef Friedrich C, Endlich N, Kriz W, Endlich KH (2006) Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Ren Physiol 291:F856–F865CrossRef
36.
go back to reference Schordan S, Schordan E, Endlich KH, Endlich N (2010) av-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Ren Physiol 300:F119–F132CrossRef Schordan S, Schordan E, Endlich KH, Endlich N (2010) av-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Ren Physiol 300:F119–F132CrossRef
37.
go back to reference Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA (2014) Fluid shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 29:65–72CrossRefPubMed Srivastava T, Celsi GE, Sharma M, Dai H, McCarthy ET, Ruiz M, Cudmore PA, Alon US, Sharma R, Savin VA (2014) Fluid shear stress over podocytes is increased in the solitary kidney. Nephrol Dial Transplant 29:65–72CrossRefPubMed
38.
go back to reference Kriz W, Hähnel B, Hosser H, Ostendorf T, Kränzlin B, Gretz N, Shimizu F, Floege J (2003) Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis. J Am Soc Nephrol 14:1904–1926CrossRefPubMed Kriz W, Hähnel B, Hosser H, Ostendorf T, Kränzlin B, Gretz N, Shimizu F, Floege J (2003) Pathways to recovery and loss of nephrons in anti-Thy-1 nephritis. J Am Soc Nephrol 14:1904–1926CrossRefPubMed
39.
go back to reference Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269CrossRefPubMed Kriz W, Lemley KV (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26:258–269CrossRefPubMed
41.
go back to reference Wartiovaara J, Ofverstedt IG, Khoshnoodi J, Zhang J, Makela E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114:1475–1483CrossRefPubMedPubMedCentral Wartiovaara J, Ofverstedt IG, Khoshnoodi J, Zhang J, Makela E, Sandin S, Ruotsalainen V, Cheng RH, Jalanko H, Skoglund U, Tryggvason K (2004) Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest 114:1475–1483CrossRefPubMedPubMedCentral
42.
go back to reference Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74CrossRefPubMed Panorchan P, Thompson MS, Davis KJ, Tseng Y, Konstantopoulos K, Wirtz D (2006) Single-molecule analysis of cadherin-mediated cell-cell adhesion. J Cell Sci 119:66–74CrossRefPubMed
43.
go back to reference Inoue T, Yaoita E, Kurihara H, Shimizu F, Sakai T, Kobayashi T, Ohshiro K, Kawachi H, Okada H, Suzuki H, Kihara I, Yamamoto T (2001) Fat is a component of glomerular slit diaphragms. Kidney Int 59:1003–1012CrossRefPubMed Inoue T, Yaoita E, Kurihara H, Shimizu F, Sakai T, Kobayashi T, Ohshiro K, Kawachi H, Okada H, Suzuki H, Kihara I, Yamamoto T (2001) Fat is a component of glomerular slit diaphragms. Kidney Int 59:1003–1012CrossRefPubMed
45.
go back to reference Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14:211–216CrossRefPubMed Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14:211–216CrossRefPubMed
46.
go back to reference Huber TB, Schermer B, Benzing T (2007) Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron Exp Nephrol 106:e27–e31CrossRefPubMed Huber TB, Schermer B, Benzing T (2007) Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron Exp Nephrol 106:e27–e31CrossRefPubMed
47.
48.
go back to reference Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030CrossRefPubMedPubMedCentral Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030CrossRefPubMedPubMedCentral
49.
go back to reference Kriz W, Hähnel B, Hosser H, Rösener S, Waldherr R (2014) Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol 5:207CrossRef Kriz W, Hähnel B, Hosser H, Rösener S, Waldherr R (2014) Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol 5:207CrossRef
50.
go back to reference Seiler MW, Rennke HG, Venkatachalam MA, Cotran RS (1977) Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab Invest 36:48–62PubMed Seiler MW, Rennke HG, Venkatachalam MA, Cotran RS (1977) Pathogenesis of polycation-induced alterations (“fusion”) of glomerular epithelium. Lab Invest 36:48–62PubMed
51.
go back to reference Venkatachalam MA, Karnovsky MJ, Cotran RS (1969) Glomerular permeability—Ultrastructural studies in experimental nephrosis using horseradish peroxidase as a tracer. J Exp Med 130:381–399CrossRefPubMedPubMedCentral Venkatachalam MA, Karnovsky MJ, Cotran RS (1969) Glomerular permeability—Ultrastructural studies in experimental nephrosis using horseradish peroxidase as a tracer. J Exp Med 130:381–399CrossRefPubMedPubMedCentral
52.
go back to reference Caulfield JP, Reid JJ, Farquhar MG (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest 34:43–59PubMed Caulfield JP, Reid JJ, Farquhar MG (1976) Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest 34:43–59PubMed
53.
go back to reference Kerjaschki D (1978) Polycation-induced dislocation of slit diaphragms and formation of cell junctions in rat kidney glomeruli. The effects of low temperature, divalent cations, colchicine, and cytochalasin B. Lab Invest 39:430–440PubMed Kerjaschki D (1978) Polycation-induced dislocation of slit diaphragms and formation of cell junctions in rat kidney glomeruli. The effects of low temperature, divalent cations, colchicine, and cytochalasin B. Lab Invest 39:430–440PubMed
54.
go back to reference Pricam C, Humbert F, Perrelet A, Amherdt M, Orci L (1975) Intercellular junctions in podocytes of the nephrotic glomerulus as seen with freeze-fracture. Lab Invest 33:209–218PubMed Pricam C, Humbert F, Perrelet A, Amherdt M, Orci L (1975) Intercellular junctions in podocytes of the nephrotic glomerulus as seen with freeze-fracture. Lab Invest 33:209–218PubMed
55.
go back to reference Inokuchi S, Sakai T, Shirato I, Tomino Y, Koide H (1993) Ultrastructural changes in glomerular epithelial cells in acute puromycin aminonucleoside nephrosis: a study by high-resolutionscanning electron microscopy. Virchows Arch A Pathol Anat Histopathol 423:11–119CrossRef Inokuchi S, Sakai T, Shirato I, Tomino Y, Koide H (1993) Ultrastructural changes in glomerular epithelial cells in acute puromycin aminonucleoside nephrosis: a study by high-resolutionscanning electron microscopy. Virchows Arch A Pathol Anat Histopathol 423:11–119CrossRef
56.
go back to reference Kurihara H, Anderson JM, Kerjaschki D, Farquhar MG (1992) The altered glomerular filtration slits seen in puromycin aminonucleoside nephrosis and protamine sulfate-treated rats contain the tight junction protein ZO-1. Am J Pathol 141:805–815PubMedPubMedCentral Kurihara H, Anderson JM, Kerjaschki D, Farquhar MG (1992) The altered glomerular filtration slits seen in puromycin aminonucleoside nephrosis and protamine sulfate-treated rats contain the tight junction protein ZO-1. Am J Pathol 141:805–815PubMedPubMedCentral
57.
go back to reference Shono A, Tsukaguchi H, Yaoita E, Nameta M, Kurihara H, Qin XS, Yamamoto T, Doi T (2007) Podocin participates in the assembly of tight junctions between foot processes in nephrotic podocytes. J Am Soc Nephrol 18:2525–2533CrossRefPubMed Shono A, Tsukaguchi H, Yaoita E, Nameta M, Kurihara H, Qin XS, Yamamoto T, Doi T (2007) Podocin participates in the assembly of tight junctions between foot processes in nephrotic podocytes. J Am Soc Nephrol 18:2525–2533CrossRefPubMed
59.
go back to reference Yaoita E, Kurihara H, Yoshida Y, Inoue T, Matsuki A, Sakai T, Yamamoto T (2005) Role of Fat1 in cell-cell contact formation of podocytes in puromycin aminonucleoside nephrosis and neonatal kidney. Kidney Int 68:542–551CrossRefPubMed Yaoita E, Kurihara H, Yoshida Y, Inoue T, Matsuki A, Sakai T, Yamamoto T (2005) Role of Fat1 in cell-cell contact formation of podocytes in puromycin aminonucleoside nephrosis and neonatal kidney. Kidney Int 68:542–551CrossRefPubMed
60.
go back to reference Zhao L, Yaoita E, Nameta M, Zhang Y, Cuellar LM, Fujinaka H, Xu B, Yoshida Y, Hatakeyama K, Yamamoto T (2008) Claudin-6 localized in tight junctions of rat podocytes. Am J Physiol Regul Integr Comp Physiol 294:R1856–R1862CrossRefPubMed Zhao L, Yaoita E, Nameta M, Zhang Y, Cuellar LM, Fujinaka H, Xu B, Yoshida Y, Hatakeyama K, Yamamoto T (2008) Claudin-6 localized in tight junctions of rat podocytes. Am J Physiol Regul Integr Comp Physiol 294:R1856–R1862CrossRefPubMed
61.
go back to reference Koda R, Zhao L, Yaoita E, Yoshida Y, Tsukita S, Tamura A, Nameta M, Zhang Y, Fujinaka H, Magdeldin S, Xu B, Narita I, Yamamoto T (2011) Novel expression of claudin-5 in glomerular podocytes. Cell Tissue Res 343:637–648CrossRefPubMed Koda R, Zhao L, Yaoita E, Yoshida Y, Tsukita S, Tamura A, Nameta M, Zhang Y, Fujinaka H, Magdeldin S, Xu B, Narita I, Yamamoto T (2011) Novel expression of claudin-5 in glomerular podocytes. Cell Tissue Res 343:637–648CrossRefPubMed
62.
go back to reference Warsow G, Endlich N, Schordan E, Schordan S, Chilukoti RK, Homuth G, Moeller MJ, Fuellen G, Endlich K (2013) PodNet, a protein-protein interaction network of the podocyte. Kidney Int 84:104–115CrossRefPubMed Warsow G, Endlich N, Schordan E, Schordan S, Chilukoti RK, Homuth G, Moeller MJ, Fuellen G, Endlich K (2013) PodNet, a protein-protein interaction network of the podocyte. Kidney Int 84:104–115CrossRefPubMed
63.
go back to reference Tao J, Polumbo C, Reidy K, Sweetwyne M, Susztak K (2014) A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis. Kidney Int 85:972–980CrossRefPubMed Tao J, Polumbo C, Reidy K, Sweetwyne M, Susztak K (2014) A multicolor podocyte reporter highlights heterogeneous podocyte changes in focal segmental glomerulosclerosis. Kidney Int 85:972–980CrossRefPubMed
64.
go back to reference Kriz W, Hähnel B, Rösener S, Elger M (1995) Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450CrossRefPubMed Kriz W, Hähnel B, Rösener S, Elger M (1995) Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450CrossRefPubMed
65.
go back to reference Wheeler J, Robertson H, Morley AR, Appleton DR (1993) Anti-glomerular basement membrane glomerulonephritis (anti-GBM GN) in the mouse: BrdU-labelling indices and histological damage. Int J Exp Pathol 74:9–19PubMedPubMedCentral Wheeler J, Robertson H, Morley AR, Appleton DR (1993) Anti-glomerular basement membrane glomerulonephritis (anti-GBM GN) in the mouse: BrdU-labelling indices and histological damage. Int J Exp Pathol 74:9–19PubMedPubMedCentral
66.
go back to reference Yoshikawa N, Hiroshi I, Akamatsu R, Hazikano H, Okada S, Matsuo T (1986) Glomerular podocyte vacuolation in focal segmental glomerulosclerosis. Arch Pathol Lab Med 110:394–398PubMed Yoshikawa N, Hiroshi I, Akamatsu R, Hazikano H, Okada S, Matsuo T (1986) Glomerular podocyte vacuolation in focal segmental glomerulosclerosis. Arch Pathol Lab Med 110:394–398PubMed
67.
go back to reference Elias H, Hossmann A, Barth IB, Solmor A (1960) Blood flow in the renal glomerulus. J Urol 83:790–798PubMed Elias H, Hossmann A, Barth IB, Solmor A (1960) Blood flow in the renal glomerulus. J Urol 83:790–798PubMed
68.
go back to reference Aizawa K, Takeda S, Tashiro Y, Yorozu K, Hirata M, Kanada H, Moriguchi Y, Endo K (2012) Renoprotection by continuous erythropoietin receptor activator in puromycin aminonucleoside-induced nephrotic syndrome. Am J Nephrol 36:419–426CrossRefPubMed Aizawa K, Takeda S, Tashiro Y, Yorozu K, Hirata M, Kanada H, Moriguchi Y, Endo K (2012) Renoprotection by continuous erythropoietin receptor activator in puromycin aminonucleoside-induced nephrotic syndrome. Am J Nephrol 36:419–426CrossRefPubMed
69.
go back to reference Toth T, Takebayashi S (1992) Glomerular podocyte vacuolation in idiopathic membranous glomerulonephritis. Nephron 61:16–20CrossRefPubMed Toth T, Takebayashi S (1992) Glomerular podocyte vacuolation in idiopathic membranous glomerulonephritis. Nephron 61:16–20CrossRefPubMed
70.
go back to reference Yamazaki T (1995) Podocytic degeneration and regeneration in puromycin aminonucleoside nephropathy in the rat. Pathol Int 45:465–467CrossRefPubMed Yamazaki T (1995) Podocytic degeneration and regeneration in puromycin aminonucleoside nephropathy in the rat. Pathol Int 45:465–467CrossRefPubMed
71.
go back to reference Ichikawa I, Ma J, Motojima M, Matsusaka T (2005) Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens 14:205–210CrossRefPubMed Ichikawa I, Ma J, Motojima M, Matsusaka T (2005) Podocyte damage damages podocytes: autonomous vicious cycle that drives local spread of glomerular sclerosis. Curr Opin Nephrol Hypertens 14:205–210CrossRefPubMed
72.
go back to reference Kaufman JM, DiMeola HJ, Siegel NJ, Lytton B, Kashgarian M, Hayslett JP (1974) Compensatory adaption of structure and function following progressive renal ablation. Kidney Int 6:10–17CrossRefPubMed Kaufman JM, DiMeola HJ, Siegel NJ, Lytton B, Kashgarian M, Hayslett JP (1974) Compensatory adaption of structure and function following progressive renal ablation. Kidney Int 6:10–17CrossRefPubMed
73.
go back to reference Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. Kidney Int 17:438–454CrossRefPubMed Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. Kidney Int 17:438–454CrossRefPubMed
74.
go back to reference Yip KP, Holstein-Rathlou NH, Marsh DJ (1993) Mechanisms of temporal variation in single-nephron blood flow in rats. Am J Physiol 264:F427–F434PubMed Yip KP, Holstein-Rathlou NH, Marsh DJ (1993) Mechanisms of temporal variation in single-nephron blood flow in rats. Am J Physiol 264:F427–F434PubMed
76.
go back to reference Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T, Wickman LT, Wiggins JE, Muchayi T, Fingar D, Shedden KA, Inoki K, Wiggins RC (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351–1363CrossRefPubMedPubMedCentral Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T, Wickman LT, Wiggins JE, Muchayi T, Fingar D, Shedden KA, Inoki K, Wiggins RC (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351–1363CrossRefPubMedPubMedCentral
77.
go back to reference Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE, Kuick RD, Wiggins RC (2005) Podocyte hypertrophy, “Adaptation”, and “Decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 16:2953–2966CrossRefPubMed Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE, Kuick RD, Wiggins RC (2005) Podocyte hypertrophy, “Adaptation”, and “Decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 16:2953–2966CrossRefPubMed
78.
go back to reference Anderson S, Meyer TW, Rennke HG, Brenner BM (1985) Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619CrossRefPubMedPubMedCentral Anderson S, Meyer TW, Rennke HG, Brenner BM (1985) Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest 76:612–619CrossRefPubMedPubMedCentral
80.
go back to reference Topham PS, Haydar SA, Kuphal R, Lightfoot JD, Salant DJ (1999) Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney Int 55:1763–1775CrossRefPubMed Topham PS, Haydar SA, Kuphal R, Lightfoot JD, Salant DJ (1999) Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney Int 55:1763–1775CrossRefPubMed
Metadata
Title
Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis
Authors
Wilhelm Kriz
Kevin V. Lemley
Publication date
01-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 3/2017
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-016-3358-9

Other articles of this Issue 3/2017

Pediatric Nephrology 3/2017 Go to the issue