Skip to main content
Top
Published in: International Journal of Legal Medicine 4/2020

01-07-2020 | Original Article

Maximum tensile stress and strain of skin of the domestic pig—differences concerning pigs from organic and non-organic farming

Authors: Sylvia Schick, Miriam Leiderer, Felicitas Lanzl, Matthias Graw, Steffen Peldschus

Published in: International Journal of Legal Medicine | Issue 4/2020

Login to get access

Abstract

The purpose of this work has been to determine differences in biomechanical properties of porcine skin from organic and non-organic farming as porcine skin is widely used as a model for human skin. A test apparatus was used, using gravity to stretch and finally tear a dumbbell-shaped specimen of prepared abdominal skin with a testing surface area of 25 × 4 mm. A total of 32 specimens were taken from seven individual pigs, three from organic and four from non-organic farming, in different orientations with respect to the Langer’s lines. The tests were performed at a dynamic speed of around 1.66 m/s (corresponding to a nominal strain rate of 67 s−1). Engineering strain at rupture was higher in pig skin from non-organic farming with values up to 321% as opposed to 90% in organic pig skin. The maximum tensile stress found in non-organic pig skin was lower than in pig skin from organic farming with maximum values of 34 MPa as opposed to 58 MPa. The reason for the difference in biomechanical properties is unclear; the effect of sunlight is discussed as well as other factors like age and exercise. It seems that the biomechanical properties of porcine skin from organic farming are more similar to those of human skin.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cronin DS (2011) Explicit finite element method applied to impact biomechanics problems. IRCOBI Conference Proceedings: 240–254 Cronin DS (2011) Explicit finite element method applied to impact biomechanics problems. IRCOBI Conference Proceedings: 240–254
2.
go back to reference Forman JL, Kent RW, Mroz K et al (2012) Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. AAAM Ann Conf Proc 56:109–124 Forman JL, Kent RW, Mroz K et al (2012) Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. AAAM Ann Conf Proc 56:109–124
3.
go back to reference Kieser J, Taylor M, Carr D (2012) Forensic biomechanics. Developments in Forensic Science, WileyCrossRef Kieser J, Taylor M, Carr D (2012) Forensic biomechanics. Developments in Forensic Science, WileyCrossRef
6.
go back to reference BGIA – Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (2009) BG/BGIA-Empfehlungen für die Gefährdungsbeurteilung nach Maschinenrichtlinie: Gestaltung von Arbeitsplätzen mit kollaborierenden Robotern: Umfang: 37 Seiten BGIA – Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (2009) BG/BGIA-Empfehlungen für die Gefährdungsbeurteilung nach Maschinenrichtlinie: Gestaltung von Arbeitsplätzen mit kollaborierenden Robotern: Umfang: 37 Seiten
12.
go back to reference Barker DE (1951) Skin thickness in the human. Plast Reconstr Surg (1946) 7(2):115–116CrossRef Barker DE (1951) Skin thickness in the human. Plast Reconstr Surg (1946) 7(2):115–116CrossRef
14.
go back to reference Fazekas IG, Kósa F, Basch A (1968) Uber die Reissfestigkeit der Haut verschiedener Körperregionen (On the tensile strength of skin in various body areas). Deut Z Ges Geric Med 64(2):62–92 Fazekas IG, Kósa F, Basch A (1968) Uber die Reissfestigkeit der Haut verschiedener Körperregionen (On the tensile strength of skin in various body areas). Deut Z Ges Geric Med 64(2):62–92
22.
go back to reference Meyer W, Schwarz R, Neurand K (1978) The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol 7:39–52PubMedCrossRef Meyer W, Schwarz R, Neurand K (1978) The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol 7:39–52PubMedCrossRef
23.
go back to reference Meyer W (1996) Bemerkungen zur Eignung der Schweinehaut als biologisches Modell für die Haut des Menschen (Comments on the suitability of swine skin as a biological model for human skin). Hautarzt 47(3):178–182PubMedCrossRef Meyer W (1996) Bemerkungen zur Eignung der Schweinehaut als biologisches Modell für die Haut des Menschen (Comments on the suitability of swine skin as a biological model for human skin). Hautarzt 47(3):178–182PubMedCrossRef
24.
25.
go back to reference Allam SS, Heidemann E (1974) Isolation, characterization and comparative studies of the N-terminal peptides from soluble pig skin collagen. FEBS Lett 39(2):187–189PubMedCrossRef Allam SS, Heidemann E (1974) Isolation, characterization and comparative studies of the N-terminal peptides from soluble pig skin collagen. FEBS Lett 39(2):187–189PubMedCrossRef
26.
29.
go back to reference Langer K (ed) (1861) Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis Langer K (ed) (1861) Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis
30.
go back to reference Rose EH, Ksander GA, Vistnes LM (1976) Skin tension lines in the domestic pig. Plast Reconstr Surg 57(6):729–732PubMedCrossRef Rose EH, Ksander GA, Vistnes LM (1976) Skin tension lines in the domestic pig. Plast Reconstr Surg 57(6):729–732PubMedCrossRef
32.
go back to reference Jansen LH, Rottier PB (1958) Comparison of the mechanical properties of strips of human abdominal skin excised from below and from above the umbilic. Dermatologica 117(4):252–258PubMedCrossRef Jansen LH, Rottier PB (1958) Comparison of the mechanical properties of strips of human abdominal skin excised from below and from above the umbilic. Dermatologica 117(4):252–258PubMedCrossRef
34.
go back to reference Yamada H (ed) (1970) Strength of biological materials. Williams & Wilkins, Baltimore Yamada H (ed) (1970) Strength of biological materials. Williams & Wilkins, Baltimore
35.
go back to reference Holzmann H, Korting GW, Kobelt D et al (1971) Prüfung der mechanischen Eigenschaften von menschlicher Haut in Abhängigkeit von Alter und Geschlecht (Studies on the mechanical properties of human skin in relation to age and sex). Arch Klin Exp Dermatol 239(4):355–367PubMedCrossRef Holzmann H, Korting GW, Kobelt D et al (1971) Prüfung der mechanischen Eigenschaften von menschlicher Haut in Abhängigkeit von Alter und Geschlecht (Studies on the mechanical properties of human skin in relation to age and sex). Arch Klin Exp Dermatol 239(4):355–367PubMedCrossRef
36.
go back to reference Dunn MG, Silver FH, Swann DA (1985) Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest Dermatol 84(1):9–13PubMedCrossRef Dunn MG, Silver FH, Swann DA (1985) Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest Dermatol 84(1):9–13PubMedCrossRef
39.
go back to reference Gallagher AJ, Ní Anniadh A, Bruyere K et al. (eds) (2012) Dynamic tensile properties of human skin Gallagher AJ, Ní Anniadh A, Bruyere K et al. (eds) (2012) Dynamic tensile properties of human skin
40.
go back to reference Doerfel S (2015) Generierung von Grundlagen für die Simulation von Weichgewebeverletzungen. Dissertation, Ludwig-Maximilians-Universität München Doerfel S (2015) Generierung von Grundlagen für die Simulation von Weichgewebeverletzungen. Dissertation, Ludwig-Maximilians-Universität München
46.
go back to reference Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. CRC Crit Rev Bioeng 1(4):453–495PubMed Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. CRC Crit Rev Bioeng 1(4):453–495PubMed
47.
go back to reference Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Invest Dermatol 73(1):84–87PubMedCrossRef Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Invest Dermatol 73(1):84–87PubMedCrossRef
52.
go back to reference Bernstein EF, Chen YQ, Kopp JB et al (1996) Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol 34(2 Pt 1):209–218PubMedCrossRef Bernstein EF, Chen YQ, Kopp JB et al (1996) Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol 34(2 Pt 1):209–218PubMedCrossRef
54.
go back to reference Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131(Pt 4):611–620PubMedPubMedCentral Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131(Pt 4):611–620PubMedPubMedCentral
57.
go back to reference Borges AF (1984) Relaxed skin tension lines (RSTL) versus other skin lines. Plast Reconstr Surg 73(1):144–150PubMedCrossRef Borges AF (1984) Relaxed skin tension lines (RSTL) versus other skin lines. Plast Reconstr Surg 73(1):144–150PubMedCrossRef
60.
go back to reference Nishimura T, Liu A, Hattori A et al (1998) Changes in mechanical strength of intramuscular connective tissue during postmortem aging of beef. J Anim Sci 76(2):528–532PubMedCrossRef Nishimura T, Liu A, Hattori A et al (1998) Changes in mechanical strength of intramuscular connective tissue during postmortem aging of beef. J Anim Sci 76(2):528–532PubMedCrossRef
61.
go back to reference Viidik A, Lewin T (1966) Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta Orthop Scand 37(2):141–155PubMedCrossRef Viidik A, Lewin T (1966) Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta Orthop Scand 37(2):141–155PubMedCrossRef
Metadata
Title
Maximum tensile stress and strain of skin of the domestic pig—differences concerning pigs from organic and non-organic farming
Authors
Sylvia Schick
Miriam Leiderer
Felicitas Lanzl
Matthias Graw
Steffen Peldschus
Publication date
01-07-2020
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Legal Medicine / Issue 4/2020
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-019-02207-w

Other articles of this Issue 4/2020

International Journal of Legal Medicine 4/2020 Go to the issue